forked from BachiLi/diffvg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
single_stroke.py
121 lines (112 loc) · 4.54 KB
/
single_stroke.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import pydiffvg
import torch
import skimage
import numpy as np
# Use GPU if available
pydiffvg.set_use_gpu(torch.cuda.is_available())
canvas_width, canvas_height = 256, 256
num_control_points = torch.tensor([2])
points = torch.tensor([[120.0, 30.0], # base
[150.0, 60.0], # control point
[ 90.0, 198.0], # control point
[ 60.0, 218.0]]) # base
path = pydiffvg.Path(num_control_points = num_control_points,
points = points,
is_closed = False,
stroke_width = torch.tensor(5.0))
shapes = [path]
path_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([0]),
fill_color = torch.tensor([0.0, 0.0, 0.0, 0.0]),
stroke_color = torch.tensor([0.6, 0.3, 0.6, 0.8]))
shape_groups = [path_group]
scene_args = pydiffvg.RenderFunction.serialize_scene(\
canvas_width, canvas_height, shapes, shape_groups)
render = pydiffvg.RenderFunction.apply
img = render(256, # width
256, # height
2, # num_samples_x
2, # num_samples_y
0, # seed
None, # background_image
*scene_args)
# The output image is in linear RGB space. Do Gamma correction before saving the image.
pydiffvg.imwrite(img.cpu(), 'results/single_stroke/target.png', gamma=2.2)
target = img.clone()
# Move the path to produce initial guess
# normalize points for easier learning rate
points_n = torch.tensor([[100.0/256.0, 40.0/256.0], # base
[155.0/256.0, 65.0/256.0], # control point
[100.0/256.0, 180.0/256.0], # control point
[ 65.0/256.0, 238.0/256.0]], # base
requires_grad = True)
stroke_color = torch.tensor([0.4, 0.7, 0.5, 0.5], requires_grad=True)
stroke_width_n = torch.tensor(10.0 / 100.0, requires_grad=True)
path.points = points_n * 256
path.stroke_width = stroke_width_n * 100
path_group.stroke_color = stroke_color
scene_args = pydiffvg.RenderFunction.serialize_scene(\
canvas_width, canvas_height, shapes, shape_groups)
img = render(256, # width
256, # height
2, # num_samples_x
2, # num_samples_y
1, # seed
None, # background_image
*scene_args)
pydiffvg.imwrite(img.cpu(), 'results/single_stroke/init.png', gamma=2.2)
# Optimize
optimizer = torch.optim.Adam([points_n, stroke_color, stroke_width_n], lr=1e-2)
# Run 200 Adam iterations.
for t in range(200):
print('iteration:', t)
optimizer.zero_grad()
# Forward pass: render the image.
path.points = points_n * 256
path.stroke_width = stroke_width_n * 100
path_group.stroke_color = stroke_color
scene_args = pydiffvg.RenderFunction.serialize_scene(\
canvas_width, canvas_height, shapes, shape_groups)
img = render(256, # width
256, # height
2, # num_samples_x
2, # num_samples_y
t+1, # seed
None, # background_image
*scene_args)
# Save the intermediate render.
pydiffvg.imwrite(img.cpu(), 'results/single_stroke/iter_{}.png'.format(t), gamma=2.2)
# Compute the loss function. Here it is L2.
loss = (img - target).pow(2).sum()
print('loss:', loss.item())
# Backpropagate the gradients.
loss.backward()
# Print the gradients
print('points_n.grad:', points_n.grad)
print('stroke_color.grad:', stroke_color.grad)
print('stroke_width.grad:', stroke_width_n.grad)
# Take a gradient descent step.
optimizer.step()
# Print the current params.
print('points:', path.points)
print('stroke_color:', path_group.stroke_color)
print('stroke_width:', path.stroke_width)
# Render the final result.
path.points = points_n * 256
path.stroke_width = stroke_width_n * 100
path_group.stroke_color = stroke_color
scene_args = pydiffvg.RenderFunction.serialize_scene(\
canvas_width, canvas_height, shapes, shape_groups)
img = render(256, # width
256, # height
2, # num_samples_x
2, # num_samples_y
202, # seed
None, # background_image
*scene_args)
# Save the images and differences.
pydiffvg.imwrite(img.cpu(), 'results/single_stroke/final.png')
# Convert the intermediate renderings to a video.
from subprocess import call
call(["ffmpeg", "-framerate", "24", "-i",
"results/single_stroke/iter_%d.png", "-vb", "20M",
"results/single_stroke/out.mp4"])