-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
84 lines (60 loc) · 2.43 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# 加载必要的库
import torch
from torch.utils.data import DataLoader
from transformers import AutoTokenizer, AutoModelForSequenceClassification, get_scheduler
from torch.optim import AdamW
import evaluate
from tqdm.auto import tqdm
from datasets import load_dataset
# Config
MODEL_PATH = "./model/Qwen/Qwen2___5-0___5B-Instruct"
# DATASET_PATH = "./dataset/sharegpt_gpt4"
DATASET_PATH = "ag_news"
# Dataset
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
raw_datasets = load_dataset(DATASET_PATH)
def tokenize_function(example):
return tokenizer(example["text"], padding="max_length", truncation=True)
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
tokenized_datasets = tokenized_datasets.remove_columns(["text"])
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
tokenized_datasets.set_format("torch")
small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
train_dataloader = DataLoader(small_train_dataset, shuffle=True, batch_size=8)
eval_dataloader = DataLoader(small_eval_dataset, batch_size=8)
# Model
model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH, num_labels=4)
# Optimizer
optimizer = AdamW(model.parameters(), lr=5e-5)
num_epochs = 3
num_training_steps = num_epochs * len(train_dataloader)
lr_scheduler = get_scheduler("linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps)
# Device
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model.to(device)
# Train
progress_bar = tqdm(range(num_training_steps))
model.train()
for epoch in range(num_epochs):
for batch in train_dataloader:
batch = {k: v.to(device) for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
# Evaluation
metric = evaluate.load("accuracy")
model.eval()
for batch in eval_dataloader:
batch = {k: v.to(device) for k, v in batch.items()}
with torch.no_grad():
outputs = model(**batch)
logits = outputs.logits
predictions = torch.argmax(logits, dim=-1)
metric.add_batch(predictions=predictions, references=batch["labels"])
accuracy = metric.compute()
print(f"Accuracy: {accuracy['accuracy']:.4f}")