Skip to content

Latest commit

 

History

History
95 lines (77 loc) · 2.48 KB

README.md

File metadata and controls

95 lines (77 loc) · 2.48 KB

sparse_convolution

Sparse convolution in python.
Uses Toeplitz convolutional matrix multiplication to perform sparse convolution.
This allows for extremely fast convolution when:

  • The kernel is small (<= 100x100)
  • The input array is sparse (<= 1% density)
  • The input array is small (<= 1000x1000)
  • Many arrays are convolved with the same kernel (large batch size >= 1000)

Install:

The package is available on PyPI.
pip install sparse_convolution


Alternatively, you can install from source.
git clone https://github.com/RichieHakim/sparse_convolution
cd sparse_convolution
pip install -e .

Basic usage:

Convolve a single sparse 2D array with a 2D kernel.

import sparse_convolution as sc
import numpy as np
import scipy.sparse

# Create a single sparse matrix
A = scipy.sparse.rand(100, 100, density=0.1)

# Create a dense kernel
B = np.random.rand(3, 3)

# Prepare class
conv = sc.Toeplitz_convolution2d(
    x_shape=A.shape,
    k=B,
    mode='same',
    dtype=np.float32,
)

# Convolve
C = conv(
    x=A,
    batching=False,
).toarray()

Batching usage:

Convolve multiple sparse 2D arrays with a 2D kernel.
The input arrays must be reshaped into flattened vectors and stacked into a single sparse array of shape: (n_arrays, height * width).

import sparse_convolution as sc
import numpy as np
import scipy.sparse

# Create multiple sparse matrices
# note that the shape of A will be (3, 100**2)
A = scipy.sparse.vstack([
    scipy.sparse.rand(100, 100, density=0.1).reshape(1, -1),
    scipy.sparse.rand(100, 100, density=0.1).reshape(1, -1),
    scipy.sparse.rand(100, 100, density=0.1).reshape(1, -1),
]).tocsr()

# Create a dense kernel
B = np.random.rand(3, 3)

# Prepare class
conv = sc.Toeplitz_convolution2d(
    x_shape=(100, 100),  # note that the input shape here is (100, 100)
    k=B,
    mode='same',
    dtype=np.float32,
)

# Convolve
C = conv(
    x=A,
    batching=True,
)

# Reshape the output back to (3, 100, 100)
C_reshaped = np.stack([c.reshape(100, 100).toarray() for c in C], axis=0)

References