@inproceedings{SunXLW19,
title={Deep High-Resolution Representation Learning for Human Pose Estimation},
author={Ke Sun and Bin Xiao and Dong Liu and Jingdong Wang},
booktitle={CVPR},
year={2019}
}
@article{SunZJCXLMWLW19,
title={High-Resolution Representations for Labeling Pixels and Regions},
author={Ke Sun and Yang Zhao and Borui Jiang and Tianheng Cheng and Bin Xiao
and Dong Liu and Yadong Mu and Xinggang Wang and Wenyu Liu and Jingdong Wang},
journal = {CoRR},
volume = {abs/1904.04514},
year={2019}
}
Backbone | Style | Lr schd | box AP | Download |
---|---|---|---|---|
HRNetV2p-W18 | pytorch | 1x | 36.1 | model |
HRNetV2p-W18 | pytorch | 2x | 38.3 | model |
HRNetV2p-W32 | pytorch | 1x | 39.5 | model |
HRNetV2p-W32 | pytorch | 2x | 40.6 | model |
HRNetV2p-W48 | pytorch | 1x | 40.9 | model |
HRNetV2p-W48 | pytorch | 2x | 41.5 | model |
Backbone | Style | Lr schd | box AP | mask AP | Download |
---|---|---|---|---|---|
HRNetV2p-W18 | pytorch | 1x | 37.3 | 34.2 | model |
HRNetV2p-W18 | pytorch | 2x | 39.2 | 35.7 | model |
HRNetV2p-W32 | pytorch | 1x | 40.7 | 36.8 | model |
HRNetV2p-W32 | pytorch | 2x | 41.7 | 37.5 | model |
HRNetV2p-W48 | pytorch | 1x | 42.4 | 38.1 | model |
HRNetV2p-W48 | pytorch | 2x | 42.9 | 38.3 | model |
Backbone | Style | Lr schd | box AP | Download |
---|---|---|---|---|
HRNetV2p-W18 | pytorch | 20e | 41.2 | model |
HRNetV2p-W32 | pytorch | 20e | 43.7 | model |
HRNetV2p-W48 | pytorch | 20e | 44.6 | model |
Backbone | Style | Lr schd | box AP | mask AP | Download |
---|---|---|---|---|---|
HRNetV2p-W18 | pytorch | 20e | 41.9 | 36.4 | model |
HRNetV2p-W32 | pytorch | 20e | 44.5 | 38.5 | model |
HRNetV2p-W48 | pytorch | 20e | 46.0 | 39.5 | model |
Backbone | Style | Lr schd | box AP | mask AP | Download |
---|---|---|---|---|---|
HRNetV2p-W18 | pytorch | 20e | 43.1 | 37.9 | model |
HRNetV2p-W32 | pytorch | 20e | 45.3 | 39.6 | model |
HRNetV2p-W48 | pytorch | 20e | 46.8 | 40.7 | model |
HRNetV2p-W48 | pytorch | 28e | 47.0 | 41.0 | model |
X-101-64x4d-FPN | pytorch | 28e | 46.8 | 40.7 | model |
Backbone | Style | GN | MS train | Lr schd | box AP | Download |
---|---|---|---|---|---|---|
HRNetV2p-W18 | pytorch | Y | N | 1x | 35.2 | model |
HRNetV2p-W18 | pytorch | Y | N | 2x | 38.2 | model |
HRNetV2p-W32 | pytorch | Y | N | 1x | 37.7 | model |
HRNetV2p-W32 | pytorch | Y | N | 2x | 40.3 | model |
HRNetV2p-W18 | pytorch | Y | Y | 2x | 38.1 | model |
HRNetV2p-W32 | pytorch | Y | Y | 2x | 41.4 | model |
HRNetV2p-W48 | pytorch | Y | Y | 2x | 42.9 | model |
Note:
- The
28e
schedule in HTC indicates decreasing the lr at 24 and 27 epochs, with a total of 28 epochs. - HRNetV2 ImageNet pretrained models are in HRNets for Image Classification.