forked from shuboc/LeetCode-2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
course-schedule-ii.py
72 lines (63 loc) · 2.7 KB
/
course-schedule-ii.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Time: O(|V| + |E|)
# Space: O(|E|)
# There are a total of n courses you have to take, labeled from 0 to n - 1.
#
# Some courses may have prerequisites, for example to take course 0 you have to first take course 1,
# which is expressed as a pair: [0,1]
#
# Given the total number of courses and a list of prerequisite pairs, return the ordering of courses
# you should take to finish all courses.
#
# There may be multiple correct orders, you just need to return one of them. If it is impossible
# to finish all courses, return an empty array.
#
# For example:
#
# 2, [[1,0]]
# There are a total of 2 courses to take. To take course 1 you should have finished course 0.
# So the correct course order is [0,1]
#
# 4, [[1,0],[2,0],[3,1],[3,2]]
# There are a total of 4 courses to take. To take course 3 you should have finished both courses 1 and 2.
# Both courses 1 and 2 should be taken after you finished course 0. So one correct course order is [0,1,2,3].
# Another correct ordering is[0,2,1,3].
#
# Note:
# The input prerequisites is a graph represented by a list of edges, not adjacency matrices.
# Read more about how a graph is represented.
#
# Hints:
# This problem is equivalent to finding the topological order in a directed graph.
# If a cycle exists, no topological ordering exists and therefore it will be impossible to take all courses.
# Topological Sort via DFS - A great video tutorial (21 minutes) on Coursera explaining
# the basic concepts of Topological Sort.
# Topological sort could also be done via BFS.
#
class Solution:
# @param {integer} numCourses
# @param {integer[][]} prerequisites
# @return {integer[]}
def findOrder(self, numCourses, prerequisites):
res, zero_in_degree_queue, in_degree, out_degree = [], collections.deque(), {}, {}
for i, j in prerequisites:
if i not in in_degree:
in_degree[i] = sets.Set()
if j not in out_degree:
out_degree[j] = sets.Set()
in_degree[i].add(j)
out_degree[j].add(i)
for i in xrange(numCourses):
if i not in in_degree:
zero_in_degree_queue.append(i)
while zero_in_degree_queue:
prerequisite = zero_in_degree_queue.popleft()
res.append(prerequisite)
if prerequisite in out_degree:
for course in out_degree[prerequisite]:
in_degree[course].discard(prerequisite)
if not in_degree[course]:
zero_in_degree_queue.append(course)
del out_degree[prerequisite]
if out_degree:
return []
return res