forked from goodfeli/adversarial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeconv.py
384 lines (307 loc) · 13.8 KB
/
deconv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import functools
import logging
import numpy as np
from theano.compat import OrderedDict
from theano import tensor as T
from pylearn2.linear.conv2d_c01b import make_random_conv2D
from pylearn2.models import Model
from pylearn2.models.maxout import check_cuda # TODO: import from original path
from pylearn2.models.mlp import Layer
#from pylearn2.models.maxout import py_integer_types # TODO: import from orig path
from pylearn2.space import Conv2DSpace
from pylearn2.utils import sharedX
logger = logging.getLogger(__name__)
class Deconv(Layer):
def __init__(self,
num_channels,
kernel_shape,
layer_name,
irange=None,
init_bias=0.,
W_lr_scale=None,
b_lr_scale=None,
pad_out=0,
fix_kernel_shape=False,
partial_sum=1,
tied_b=False,
max_kernel_norm=None,
output_stride=(1, 1)):
check_cuda(str(type(self)))
super(Deconv, self).__init__()
detector_channels = num_channels
self.__dict__.update(locals())
del self.self
@functools.wraps(Model.get_lr_scalers)
def get_lr_scalers(self):
if not hasattr(self, 'W_lr_scale'):
self.W_lr_scale = None
if not hasattr(self, 'b_lr_scale'):
self.b_lr_scale = None
rval = OrderedDict()
if self.W_lr_scale is not None:
W, = self.transformer.get_params()
rval[W] = self.W_lr_scale
if self.b_lr_scale is not None:
rval[self.b] = self.b_lr_scale
return rval
def set_input_space(self, space):
"""
Tells the layer to use the specified input space.
This resets parameters! The kernel tensor is initialized with the
size needed to receive input from this space.
Parameters
----------
space : Space
The Space that the input will lie in.
"""
setup_deconv_detector_layer_c01b(layer=self,
input_space=space,
rng=self.mlp.rng)
rng = self.mlp.rng
detector_shape = self.detector_space.shape
self.output_space = self.detector_space
logger.info('Output space: {0}'.format(self.output_space.shape))
def _modify_updates(self, updates):
"""
Replaces the values in `updates` if needed to enforce the options set
in the __init__ method, including `max_kernel_norm`.
Parameters
----------
updates : OrderedDict
A dictionary mapping parameters (including parameters not
belonging to this model) to updated values of those parameters.
The dictionary passed in contains the updates proposed by the
learning algorithm. This function modifies the dictionary
directly. The modified version will be compiled and executed
by the learning algorithm.
"""
if self.max_kernel_norm is not None:
W, = self.transformer.get_params()
if W in updates:
updated_W = updates[W]
row_norms = T.sqrt(T.sum(T.sqr(updated_W), axis=(0, 1, 2)))
desired_norms = T.clip(row_norms, 0, self.max_kernel_norm)
scales = desired_norms / (1e-7 + row_norms)
updates[W] = (updated_W * scales.dimshuffle('x', 'x', 'x', 0))
@functools.wraps(Model.get_params)
def get_params(self):
assert self.b.name is not None
W, = self.transformer.get_params()
assert W.name is not None
rval = self.transformer.get_params()
assert not isinstance(rval, set)
rval = list(rval)
assert self.b not in rval
rval.append(self.b)
return rval
@functools.wraps(Layer.get_weight_decay)
def get_weight_decay(self, coeff):
if isinstance(coeff, str):
coeff = float(coeff)
assert isinstance(coeff, float) or hasattr(coeff, 'dtype')
W, = self.transformer.get_params()
return coeff * T.sqr(W).sum()
@functools.wraps(Layer.set_weights)
def set_weights(self, weights):
W, = self.transformer.get_params()
W.set_value(weights)
@functools.wraps(Layer.set_biases)
def set_biases(self, biases):
self.b.set_value(biases)
@functools.wraps(Layer.get_biases)
def get_biases(self):
return self.b.get_value()
@functools.wraps(Model.get_weights_topo)
def get_weights_topo(self):
return self.transformer.get_weights_topo()
@functools.wraps(Layer.get_monitoring_channels)
def get_layer_monitoring_channels(self, state_below=None, state=None, targets=None):
W, = self.transformer.get_params()
assert W.ndim == 4
sq_W = T.sqr(W)
row_norms = T.sqrt(sq_W.sum(axis=(0, 1, 2)))
P = state
rval = OrderedDict()
vars_and_prefixes = [(P, '')]
for var, prefix in vars_and_prefixes:
if not hasattr(var, 'ndim') or var.ndim != 4:
print "expected 4D tensor, got "
print var
print type(var)
if isinstance(var, tuple):
print "tuple length: ", len(var)
assert False
v_max = var.max(axis=(1, 2, 3))
v_min = var.min(axis=(1, 2, 3))
v_mean = var.mean(axis=(1, 2, 3))
v_range = v_max - v_min
# max_x.mean_u is "the mean over *u*nits of the max over
# e*x*amples" The x and u are included in the name because
# otherwise its hard to remember which axis is which when reading
# the monitor I use inner.outer rather than outer_of_inner or
# something like that because I want mean_x.* to appear next to
# each other in the alphabetical list, as these are commonly
# plotted together
for key, val in [('max_x.max_u', v_max.max()),
('max_x.mean_u', v_max.mean()),
('max_x.min_u', v_max.min()),
('min_x.max_u', v_min.max()),
('min_x.mean_u', v_min.mean()),
('min_x.min_u', v_min.min()),
('range_x.max_u', v_range.max()),
('range_x.mean_u', v_range.mean()),
('range_x.min_u', v_range.min()),
('mean_x.max_u', v_mean.max()),
('mean_x.mean_u', v_mean.mean()),
('mean_x.min_u', v_mean.min())]:
rval[prefix+key] = val
rval.update(OrderedDict([('kernel_norms_min', row_norms.min()),
('kernel_norms_mean', row_norms.mean()),
('kernel_norms_max', row_norms.max()), ]))
return rval
@functools.wraps(Layer.fprop)
def fprop(self, state_below):
check_cuda(str(type(self)))
self.input_space.validate(state_below)
z = self.transformer.lmul_T(state_below)
self.output_space.validate(z)
if not hasattr(self, 'tied_b'):
self.tied_b = False
if self.tied_b:
b = self.b.dimshuffle(0, 'x', 'x', 'x')
else:
b = self.b.dimshuffle(0, 1, 2, 'x')
return z + b
def setup_deconv_detector_layer_c01b(layer, input_space, rng, irange="not specified"):
"""
layer. This function sets up only the detector layer.
Does the following:
* raises a RuntimeError if cuda is not available
* sets layer.input_space to input_space
* sets up addition of dummy channels for compatibility with cuda-convnet:
- layer.dummy_channels: # of dummy channels that need to be added
(You might want to check this and raise an Exception if it's not 0)
- layer.dummy_space: The Conv2DSpace representing the input with dummy
channels added
* sets layer.detector_space to the space for the detector layer
* sets layer.transformer to be a Conv2D instance
* sets layer.b to the right value
Parameters
----------
layer : object
Any python object that allows the modifications described below and
has the following attributes:
* pad : int describing amount of zero padding to add
* kernel_shape : 2-element tuple or list describing spatial shape of
kernel
* fix_kernel_shape : bool, if true, will shrink the kernel shape to
make it feasible, as needed (useful for hyperparameter searchers)
* detector_channels : The number of channels in the detector layer
* init_bias : numeric constant added to a tensor of zeros to
initialize the bias
* tied_b : If true, biases are shared across all spatial locations
input_space : WRITEME
A Conv2DSpace to be used as input to the layer
rng : WRITEME
A numpy RandomState or equivalent
"""
if irange != "not specified":
raise AssertionError(
"There was a bug in setup_detector_layer_c01b."
"It uses layer.irange instead of the irange parameter to the "
"function. The irange parameter is now disabled by this "
"AssertionError, so that this error message can alert you that "
"the bug affected your code and explain why the interface is "
"changing. The irange parameter to the function and this "
"error message may be removed after April 21, 2014."
)
# Use "self" to refer to layer from now on, so we can pretend we're
# just running in the set_input_space method of the layer
self = layer
# Make sure cuda is available
check_cuda(str(type(self)))
# Validate input
if not isinstance(input_space, Conv2DSpace):
raise TypeError("The input to a convolutional layer should be a "
"Conv2DSpace, but layer " + self.layer_name + " got " +
str(type(self.input_space)))
if not hasattr(self, 'detector_channels'):
raise ValueError("layer argument must have a 'detector_channels' "
"attribute specifying how many channels to put in "
"the convolution kernel stack.")
# Store the input space
self.input_space = input_space
# Make sure number of channels is supported by cuda-convnet
# (multiple of 4 or <= 3)
# If not supported, pad the input with dummy channels
ch = self.detector_channels
rem = ch % 4
if ch > 3 and rem != 0:
raise NotImplementedError("Need to do dummy channels on the output")
# self.dummy_channels = 4 - rem
#else:
# self.dummy_channels = 0
#self.dummy_space = Conv2DSpace(
# shape=input_space.shape,
# channels=input_space.num_channels + self.dummy_channels,
# axes=('c', 0, 1, 'b')
#)
if hasattr(self, 'output_stride'):
kernel_stride = self.output_stride
else:
assert False # not sure if I got the name right, remove this assert if I did
kernel_stride = [1, 1]
#o_sh = int(np.ceil((i_sh + 2. * self.pad - k_sh) / float(k_st))) + 1
#o_sh -1 = np.ceil((i_sh + 2. * self.pad - k_sh) / float(k_st))
#inv_ceil(o_sh -1) = (i_sh + 2. * self.pad - k_sh) / float(k_st)
#float(k_st) inv_cel(o_sh -1) = (i_sh + 2 * self.pad -k_sh)
# i_sh = k_st inv_ceil(o_sh-1) - 2 * self.pad + k_sh
output_shape = \
[k_st * (i_sh - 1) - 2 * self.pad_out + k_sh
for i_sh, k_sh, k_st in zip(self.input_space.shape,
self.kernel_shape, kernel_stride)]
if self.input_space.num_channels < 16:
raise ValueError("Cuda-convnet requires the input to lmul_T to have "
"at least 16 channels.")
self.detector_space = Conv2DSpace(shape=output_shape,
num_channels=self.detector_channels,
axes=('c', 0, 1, 'b'))
if hasattr(self, 'partial_sum'):
partial_sum = self.partial_sum
else:
partial_sum = 1
if hasattr(self, 'sparse_init') and self.sparse_init is not None:
self.transformer = \
checked_call(make_sparse_random_conv2D,
OrderedDict([('num_nonzero', self.sparse_init),
('input_space', self.detector_space),
('output_space', self.input_space),
('kernel_shape', self.kernel_shape),
('pad', self.pad),
('partial_sum', partial_sum),
('kernel_stride', kernel_stride),
('rng', rng)]))
else:
self.transformer = make_random_conv2D(
irange=self.irange,
input_axes=self.detector_space.axes,
output_axes=self.input_space.axes,
input_channels=self.detector_space.num_channels,
output_channels=self.input_space.num_channels,
kernel_shape=self.kernel_shape,
pad=self.pad_out,
partial_sum=partial_sum,
kernel_stride=kernel_stride,
rng=rng,
input_shape=self.detector_space.shape
)
W, = self.transformer.get_params()
W.name = self.layer_name + '_W'
if self.tied_b:
self.b = sharedX(np.zeros(self.detector_space.num_channels) +
self.init_bias)
else:
self.b = sharedX(self.detector_space.get_origin() + self.init_bias)
self.b.name = self.layer_name + '_b'
logger.info('Input shape: {0}'.format(self.input_space.shape))
print layer.layer_name + ' detector space: {0}'.format(self.detector_space.shape)