forked from paulmillr/noble-bls12-381
-
Notifications
You must be signed in to change notification settings - Fork 0
/
math.d.ts
223 lines (223 loc) · 6.42 KB
/
math.d.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
export declare const CURVE: {
P: bigint;
r: bigint;
h: bigint;
Gx: bigint;
Gy: bigint;
b: bigint;
P2: bigint;
h2: bigint;
G2x: bigint[];
G2y: bigint[];
b2: bigint[];
x: bigint;
h_eff: bigint;
};
export declare let DST_LABEL: string;
declare type BigintTuple = [bigint, bigint];
declare type BigintSix = [
bigint,
bigint,
bigint,
bigint,
bigint,
bigint
];
export declare type BigintTwelve = [
bigint,
bigint,
bigint,
bigint,
bigint,
bigint,
bigint,
bigint,
bigint,
bigint,
bigint,
bigint
];
interface Field<T> {
isZero(): boolean;
equals(rhs: T): boolean;
negate(): T;
add(rhs: T): T;
subtract(rhs: T): T;
invert(): T;
multiply(rhs: T | bigint): T;
square(): T;
pow(n: bigint): T;
div(rhs: T | bigint): T;
}
declare type FieldStatic<T extends Field<T>> = {
ZERO: T;
ONE: T;
};
export declare function mod(a: bigint, b: bigint): bigint;
export declare function powMod(a: bigint, power: bigint, m: bigint): bigint;
export declare class Fq implements Field<Fq> {
static readonly ORDER: bigint;
static readonly MAX_BITS: number;
static readonly ZERO: Fq;
static readonly ONE: Fq;
readonly value: bigint;
constructor(value: bigint);
isZero(): boolean;
equals(rhs: Fq): boolean;
negate(): Fq;
invert(): Fq;
add(rhs: Fq): Fq;
square(): Fq;
pow(n: bigint): Fq;
subtract(rhs: Fq): Fq;
multiply(rhs: Fq | bigint): Fq;
div(rhs: Fq | bigint): Fq;
toString(): string;
}
export declare class Fr implements Field<Fr> {
static readonly ORDER: bigint;
static readonly ZERO: Fr;
static readonly ONE: Fr;
static isValid(b: bigint): boolean;
readonly value: bigint;
constructor(value: bigint);
isZero(): boolean;
equals(rhs: Fr): boolean;
negate(): Fr;
invert(): Fr;
add(rhs: Fr): Fr;
square(): Fr;
pow(n: bigint): Fr;
subtract(rhs: Fr): Fr;
multiply(rhs: Fr | bigint): Fr;
div(rhs: Fr | bigint): Fr;
legendre(): Fr;
sqrt(): Fr | undefined;
toString(): string;
}
declare abstract class FQP<TT extends {
c: TTT;
} & Field<TT>, CT extends Field<CT>, TTT extends CT[]> implements Field<TT> {
abstract readonly c: CT[];
abstract init(c: TTT): TT;
abstract multiply(rhs: TT | bigint): TT;
abstract invert(): TT;
abstract square(): TT;
zip<T, RT extends T[]>(rhs: TT, mapper: (left: CT, right: CT) => T): RT;
map<T, RT extends T[]>(callbackfn: (value: CT) => T): RT;
isZero(): boolean;
equals(rhs: TT): boolean;
negate(): TT;
add(rhs: TT): TT;
subtract(rhs: TT): TT;
conjugate(): TT;
private one;
pow(n: bigint): TT;
div(rhs: TT | bigint): TT;
}
export declare class Fq2 extends FQP<Fq2, Fq, [Fq, Fq]> {
static readonly ORDER: bigint;
static readonly MAX_BITS: number;
static readonly ROOT: Fq;
static readonly ZERO: Fq2;
static readonly ONE: Fq2;
static readonly COFACTOR: bigint;
static readonly ROOTS_OF_UNITY: Fq2[];
static readonly ETAs: Fq2[];
static readonly FROBENIUS_COEFFICIENTS: Fq[];
readonly c: [Fq, Fq];
constructor(coeffs: [Fq, Fq] | [bigint, bigint] | bigint[]);
init(tuple: [Fq, Fq]): Fq2;
toString(): string;
get values(): BigintTuple;
multiply(rhs: Fq2 | bigint): Fq2;
mulByNonresidue(): Fq2;
square(): Fq2;
sqrt(): Fq2 | undefined;
invert(): Fq2;
frobeniusMap(power: number): Fq2;
multiplyByB(): Fq2;
}
export declare class Fq6 extends FQP<Fq6, Fq2, [Fq2, Fq2, Fq2]> {
readonly c: [Fq2, Fq2, Fq2];
static readonly ZERO: Fq6;
static readonly ONE: Fq6;
static readonly FROBENIUS_COEFFICIENTS_1: Fq2[];
static readonly FROBENIUS_COEFFICIENTS_2: Fq2[];
static fromTuple(t: BigintSix): Fq6;
constructor(c: [Fq2, Fq2, Fq2]);
init(triple: [Fq2, Fq2, Fq2]): Fq6;
toString(): string;
conjugate(): any;
multiply(rhs: Fq6 | bigint): Fq6;
mulByNonresidue(): Fq6;
multiplyBy1(b1: Fq2): Fq6;
multiplyBy01(b0: Fq2, b1: Fq2): Fq6;
multiplyByFq2(rhs: Fq2): Fq6;
square(): Fq6;
invert(): Fq6;
frobeniusMap(power: number): Fq6;
}
export declare class Fq12 extends FQP<Fq12, Fq6, [Fq6, Fq6]> {
readonly c: [Fq6, Fq6];
static readonly ZERO: Fq12;
static readonly ONE: Fq12;
static readonly FROBENIUS_COEFFICIENTS: Fq2[];
static fromTuple(t: BigintTwelve): Fq12;
constructor(c: [Fq6, Fq6]);
init(c: [Fq6, Fq6]): Fq12;
toString(): string;
multiply(rhs: Fq12 | bigint): Fq12;
multiplyBy014(o0: Fq2, o1: Fq2, o4: Fq2): Fq12;
multiplyByFq2(rhs: Fq2): Fq12;
square(): Fq12;
invert(): Fq12;
frobeniusMap(power: number): Fq12;
private Fq4Square;
private cyclotomicSquare;
private cyclotomicExp;
finalExponentiate(): Fq12;
}
declare type Constructor<T extends Field<T>> = {
new (...args: any[]): T;
} & FieldStatic<T> & {
MAX_BITS: number;
};
export declare abstract class ProjectivePoint<T extends Field<T>> {
readonly x: T;
readonly y: T;
readonly z: T;
private readonly C;
private _MPRECOMPUTES;
constructor(x: T, y: T, z: T, C: Constructor<T>);
isZero(): boolean;
getPoint<TT extends this>(x: T, y: T, z: T): TT;
getZero(): this;
equals(rhs: ProjectivePoint<T>): boolean;
negate(): this;
toString(isAffine?: boolean): string;
fromAffineTuple(xy: [T, T]): this;
toAffine(invZ?: T): [T, T];
toAffineBatch(points: ProjectivePoint<T>[]): [T, T][];
normalizeZ(points: this[]): this[];
double(): this;
add(rhs: this): this;
subtract(rhs: this): this;
multiplyUnsafe(scalar: number | bigint | Fq): this;
private maxBits;
private precomputeWindow;
calcMultiplyPrecomputes(W: number): void;
clearMultiplyPrecomputes(): void;
private wNAF;
multiply(scalar: number | bigint | Fq): this;
}
export declare function map_to_curve_SSWU_G2(t: bigint[] | Fq2): [Fq2, Fq2, Fq2];
export declare function isogenyMapG2(xyz: [Fq2, Fq2, Fq2]): [Fq2, Fq2, Fq2];
declare type EllCoefficients = [Fq2, Fq2, Fq2];
export declare function calcPairingPrecomputes(x: Fq2, y: Fq2): EllCoefficients[];
export declare function millerLoop(ell: EllCoefficients[], g1: [Fq, Fq]): Fq12;
export declare function psi(x: Fq2, y: Fq2): [Fq2, Fq2];
export declare function psi2(x: Fq2, y: Fq2): [Fq2, Fq2];
declare type Numerators = [Fq2, Fq2, Fq2, Fq2];
export declare const isogenyCoefficients: Numerators[];
export {};