Fastest implementation of BLS12-381 in a scripting language. The pairing-friendly Barreto-Lynn-Scott elliptic curve construction allows to:
- Construct zk-SNARKs at the 128-bit security
- Use threshold signatures, which allows a user to sign lots of messages with one signature and verify them swiftly in a batch, using Boneh-Lynn-Shacham signature scheme.
Matches specs pairing-curves-09, bls-sigs-04, hash-to-curve-10. To learn more about internals, check out BLS12-381 for the rest of us & key concepts of pairings. To try it live, see the online demo & threshold sigs demo.
noble-crypto — high-security, easily auditable set of contained cryptographic libraries and tools.
- Just two files
- No dependencies
- Easily auditable TypeScript/JS code
- Supported in all major browsers and stable node.js versions
- All releases are signed with PGP keys
- Check out all libraries: secp256k1, ed25519, bls12-381, ripemd160
Node.js and browser:
npm install noble-bls12-381
const bls = require('noble-bls12-381');
// You can use Uint8Array, or hex string for readability
const privateKey = '67d53f170b908cabb9eb326c3c337762d59289a8fec79f7bc9254b584b73265c';
const privateKeys = [
'18f020b98eb798752a50ed0563b079c125b0db5dd0b1060d1c1b47d4a193e1e4',
'ed69a8c50cf8c9836be3b67c7eeff416612d45ba39a5c099d48fa668bf558c9c',
'16ae669f3be7a2121e17d0c68c05a8f3d6bef21ec0f2315f1d7aec12484e4cf5'
];
const message = '64726e3da8';
const messages = ['d2', '0d98', '05caf3'];
(async () => {
const publicKey = bls.getPublicKey(privateKey);
const publicKeys = privateKeys.map(bls.getPublicKey);
const signature = await bls.sign(message, privateKey);
const isCorrect = await bls.verify(signature, message, publicKey);
console.log('key', publicKey);
console.log('signature', signature);
console.log('is correct:', isCorrect);
// Sign 1 msg with 3 keys
const signatures2 = await Promise.all(privateKeys.map(p => bls.sign(message, p)));
const aggPubKey2 = bls.aggregatePublicKeys(publicKeys);
const aggSignature2 = bls.aggregateSignatures(signatures2);
const isCorrect2 = await bls.verify(aggSignature2, message, aggPubKey2);
console.log();
console.log('signatures are', signatures2);
console.log('merged to one signature', aggSignature2);
console.log('is correct:', isCorrect2);
// Sign 3 msgs with 3 keys
const signatures3 = await Promise.all(privateKeys.map((p, i) => bls.sign(messages[i], p)));
const aggSignature3 = bls.aggregateSignatures(signatures3);
const isCorrect3 = await bls.verifyBatch(aggSignature3, messages, publicKeys);
console.log();
console.log('keys', publicKeys);
console.log('signatures', signatures3);
console.log('merged to one signature', aggSignature3);
console.log('is correct:', isCorrect3);
})();
getPublicKey(privateKey)
sign(message, privateKey)
verify(signature, message, publicKey)
aggregatePublicKeys(publicKeys)
aggregateSignatures(signatures)
verifyBatch(signature, messages, publicKeys)
pairing(G1Point, G2Point)
function getPublicKey(privateKey: Uint8Array | bigint): Uint8Array;
function getPublicKey(privateKey: string): string;
privateKey: Uint8Array | string | bigint
will be used to generate public key. Public key is generated by executing scalar multiplication of a base Point(x, y) by a fixed integer. The result is anotherPoint(x, y)
which we will by default encode to hex Uint8Array.- Returns
Uint8Array
: encoded publicKey for signature verification
function sign(
message: Uint8Array,
privateKey: Uint8Array
): Promise<Uint8Array>;
function sign(
message: string,
privateKey: string
): Promise<string>;
function sign(
message: PointG2,
privateKey: Uint8Array | string | bigint
): Promise<PointG2>;
message: Uint8Array | string
- message which would be hashed & signedprivateKey: Uint8Array | string | bigint
- private key which will sign the hash- Returns
Uint8Array | string | PointG2
: encoded signature
Default domain (DST) is BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_NUL_
, use bls.DST
to change it.
function verify(
signature: Uint8Array | string | PointG2,
message: Uint8Array | string | PointG2,
publicKey: Uint8Array | string | PointG1
): Promise<boolean>
signature: Uint8Array | string
- object returned by thesign
oraggregateSignatures
functionmessage: Uint8Array | string
- message hash that needs to be verifiedpublicKey: Uint8Array | string
- e.g. that was generated fromprivateKey
bygetPublicKey
- Returns
Promise<boolean>
:true
/false
whether the signature matches hash
function aggregatePublicKeys(publicKeys: Uint8Array[]): Uint8Array;
function aggregatePublicKeys(publicKeys: string[]): string;
function aggregatePublicKeys(publicKeys: PointG1[]): PointG1;
publicKeys: (Uint8Array | string | PointG1)[]
- e.g. that have been generated fromprivateKey
bygetPublicKey
- Returns
Uint8Array | PointG1
: one aggregated public key which calculated from public keys
function aggregateSignatures(signatures: Uint8Array[]): Uint8Array;
function aggregateSignatures(signatures: string[]): string;
function aggregateSignatures(signatures: PointG2[]): PointG2;
signatures: (Uint8Array | string | PointG2)[]
- e.g. that have been generated bysign
- Returns
Uint8Array | PointG2
: one aggregated signature which calculated from signatures
function verifyBatch(
signature: Uint8Array | string | PointG2,
messages: (Uint8Array | string | PointG2)[],
publicKeys: (Uint8Array | string | PointG1)[]
): Promise<boolean>
signature: Uint8Array | string | PointG2
- object returned by theaggregateSignatures
functionmessages: (Uint8Array | string | PointG2)[]
- messages hashes that needs to be verifiedpublicKeys: (Uint8Array | string | PointG1)[]
- e.g. that were generated fromprivateKeys
bygetPublicKey
- Returns
Promise<boolean>
:true
/false
whether the signature matches hashes
function pairing(
g1Point: PointG1,
g2Point: PointG2,
withFinalExponent: boolean = true
): Fq12
g1Point: PointG1
- simple point,x, y
are bigintsg2Point: PointG2
- point over curve with imaginary numbers ((x, x_1), (y, y_1)
)withFinalExponent: boolean
- should the result be powered by curve order. Very slow.- Returns
Fq12
: paired point over 12-degree extension field.
// 𝔽p
bls.CURVE.P // 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaabn
// Prime order
bls.CURVE.r // 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001n
// Hash base point (x, y)
bls.CURVE.Gx // 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001n
// x = 3685416753713387016781088315183077757961620795782546409894578378688607592378376318836054947676345821548104185464507
// y = 1339506544944476473020471379941921221584933875938349620426543736416511423956333506472724655353366534992391756441569
// Signature base point ((x_1, x_2), (y_1, y_2))
bls.CURVE.Gy
// x = 3059144344244213709971259814753781636986470325476647558659373206291635324768958432433509563104347017837885763365758, 352701069587466618187139116011060144890029952792775240219908644239793785735715026873347600343865175952761926303160
// y = 927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582, 1985150602287291935568054521177171638300868978215655730859378665066344726373823718423869104263333984641494340347905
// Classes
bls.Fq
bls.Fq2
bls.Fq12
bls.G1Point
bls.G2Point
The library uses G1 for public keys and G2 for signatures. Adding support for G1 signatures is planned.
- BLS Relies on Bilinear Pairing (expensive)
- Private Keys: 32 bytes
- Public Keys: 48 bytes: 381 bit affine x coordinate, encoded into 48 big-endian bytes.
- Signatures: 96 bytes: two 381 bit integers (affine x coordinate), encoded into two 48 big-endian byte arrays.
- The signature is a point on the G2 subgroup, which is defined over a finite field with elements twice as big as the G1 curve (G2 is over Fq2 rather than Fq. Fq2 is analogous to the complex numbers).
- The 12 stands for the Embedding degree.
Formulas:
P = pk x G
- public keysS = pk x H(m)
- signinge(P, H(m)) == e(G,S)
- verification using pairingse(G, S) = e(G, SUM(n)(Si)) = MUL(n)(e(G, Si))
- signature aggregation
The BLS parameters for the library are:
PK_IN
G1
HASH_OR_ENCODE
true
DST
BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_POP_
RAND_BITS
64
To achieve the best speed out of all JS / Python implementations, the library employs optimizations:
- cyclotomic exponentation
- frobenius coefficients
- endomorphism for clearing cofactor
Benchmarks measured with Apple M1:
getPublicKey x 1639 ops/sec @ 609μs/op
sign x 20 ops/sec @ 48ms/op
verify x 32 ops/sec @ 30ms/op
pairing x 75 ops/sec @ 13ms/op
aggregatePublicKeys/8 x 396 ops/sec @ 2ms/op
aggregateSignatures/8 x 74 ops/sec @ 13ms/op
with compression / decompression disabled:
sign/nc x 26 ops/sec @ 37ms/op
verify/nc x 55 ops/sec @ 17ms/op
aggregatePublicKeys/32 x 5402 ops/sec @ 185μs/op
aggregatePublicKeys/128 x 1305 ops/sec @ 766μs/op
aggregatePublicKeys/512 x 332 ops/sec @ 3ms/op
aggregatePublicKeys/2048 x 81 ops/sec @ 12ms/op
aggregateSignatures/32 x 1424 ops/sec @ 701μs/op
aggregateSignatures/128 x 347 ops/sec @ 2ms/op
aggregateSignatures/512 x 85 ops/sec @ 11ms/op
aggregateSignatures/2048 x 21 ops/sec @ 46ms/op
Noble is production-ready. Our goal is to have it audited by a good security expert.
We're using built-in JS BigInt
, which is "unsuitable for use in cryptography" as per official spec. This means that the lib is potentially vulnerable to timing attacks. But:
- JIT-compiler and Garbage Collector make "constant time" extremely hard to achieve in a scripting language.
- Which means any other JS library doesn't use constant-time bigints. Including bn.js or anything else. Even statically typed Rust, a language without GC, makes it harder to achieve constant-time for some cases.
- If your goal is absolute security, don't use any JS lib — including bindings to native ones. Use low-level libraries & languages.
- We however consider infrastructure attacks like rogue NPM modules very important; that's why it's crucial to minimize the amount of 3rd-party dependencies & native bindings. If your app uses 500 dependencies, any dep could get hacked and you'll be downloading rootkits with every
npm install
. Our goal is to minimize this attack vector.
- Clone the repository.
npm install
to install build dependencies like TypeScriptnpm run build
to compile TypeScript codenpm run test
to run jest ontest/index.ts
Special thanks to Roman Koblov, who have helped to improve pairing speed.
MIT (c) Paul Miller (https://paulmillr.com), see LICENSE file.