-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathrun.sh
91 lines (79 loc) · 3.45 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#!/usr/bin/env bash
#set -eux
if test "$#" -eq 1; then
stage=$(($1))
stop_stage=$(($1))
elif test "$#" -eq 2; then
stage=$(($1))
stop_stage=$(($2))
else
stage=0
stop_stage=10
fi
# corpus data will be under ${data_dir}/${corpus_name}, should be read only for exp
# train data(features, index) will be under ${data_dir}/${train_data_dir}
cur_dir=$(pwd)
data_dir=../../../data/
corpus_name=data
train_data_dir=train_data_fsn_dns_master
exp_id=$(pwd | xargs basename)
spkr_id=$(pwd | xargs dirname | xargs basename)
corpus_id=${spkr_id}_${exp_id}
#############################################
# prepare files
if [ ! -d ${corpus_name} ]; then
ln -s ${data_dir} ${corpus_name}
fi
if [ ! -d ${train_data_dir} ]; then
cpfs_cur_dir=${cur_dir/nas/cpfs}
cpfs_data_dir=${cpfs_cur_dir}/${data_dir}
mkdir -p ${cpfs_data_dir}/${train_data_dir}
ln -s ${cpfs_data_dir}/${train_data_dir} ${train_data_dir}
fi
#############################################
# generate list of clean/noise for training, dir of synthesic noisy-clean pair for val
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# gen lst
/usr/bin/python3 -m speech_enhance.tools.gen_lst --dataset_dir ${corpus_name}/DNS-Challenge/DNS-Challenge-master/datasets_16k/clean/ --output_lst ${train_data_dir}/clean.txt
/usr/bin/python3 -m speech_enhance.tools.gen_lst --dataset_dir ${corpus_name}/DNS-Challenge/DNS-Challenge-master/datasets_16k/noise/ --output_lst ${train_data_dir}/noise.txt
cat ${corpus_name}/rir/simulated_rirs_16k/*/rir_list ${corpus_name}/rir/RIRS_NOISES/real_rirs_isotropic_noises/rir_list | awk -F ' ' '{print "data/rir/"$5}' > ${train_data_dir}/rir.txt
perl -pi -e 's#data/rir#data/rir_16k#g' ${train_data_dir}/rir.txt
# just use the book wav as interspeech2020
grep book train_data_fsn_dns_master/clean.txt > train_data_fsn_dns_master/clean_book.txt
#
test_set=${corpus_name}/DNS-Challenge/DNS-Challenge-interspeech2020-master/datasets/test_set
if [ ! -d ${test_set} ]; then
echo "please prepare the ${test_set} from https://github.com/microsoft/DNS-Challenge/tree/interspeech2020/master/datasets/test_set"
exit
fi
fi
# train
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
CUDA_VISIBLE_DEVICES='0,1' python -m speech_enhance.tools.train -C config/train.toml -N 2
fi
# test
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# input 24k audio
input_dir="/workspace/project-nas-10691-sh/durian/egs/m2voc/s13/logs-s13/acoustic/analysis/gt"
output_dir="/workspace/project-nas-10691-sh/durian/egs/m2voc/s13/logs-s13/acoustic/analysis/gt_24k_enhance_s1_24k"
input_dir="/workspace/project-nas-10691-sh/durian/egs/m2voc/s10_tst_tsv_male_global_pitch_only1/logs-s10_tst_tsv_male_global_pitch_only1/eval-992914"
output_dir="/workspace/project-nas-10691-sh/durian/egs/m2voc/s10_tst_tsv_male_global_pitch_only1/logs-s10_tst_tsv_male_global_pitch_only1/eval-992914-enhance_dns_master_s1_24k"
input_dir="data/test_cases_didi/eval-992914/"
output_dir="logs/eval/test_cases_didi/eval-992914/"
# do enhance(denoise)
#CUDA_VISIBLE_DEVICES=0 \
python -m speech_enhance.tools.inference \
-C config/inference.toml \
-M logs/FullSubNet/train/checkpoints/best_model.tar \
-I ${input_dir} \
-O ${output_dir}
#-O logs/FullSubNet/inference/
# norm volume to -6db
for f in `ls ${output_dir}/*/*.wav | grep -v norm`; do
echo $f
fid=`basename $f .wav`
fo=`dirname $f`/${fid}_norm-6db.wav
echo $fo
sox $f -b16 $fo rate -v -b 99.7 24k norm -6
done
fi