forked from videolan/vlc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
transforms.py
1172 lines (915 loc) · 40.1 KB
/
transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Lossy compression algorithms very often make use of DCT or DFT calculations,
# or variations of these calculations. This file is intended to be a short
# reference about classical DCT and DFT algorithms.
from random import random
from math import pi, sin, cos, sqrt
from cmath import exp
def exp_j (alpha):
return exp (alpha * 1j)
def conjugate (c):
c = c + 0j
return c.real - 1j * c.imag
def vector (N):
return [0j] * N
# Let us start withthe canonical definition of the unscaled DFT algorithm :
# (I can not draw sigmas in a text file so I'll use python code instead) :)
def W (k, N):
return exp_j ((-2*pi*k)/N)
def unscaled_DFT (N, input, output):
for o in range(N): # o is output index
output[o] = 0
for i in range(N):
output[o] = output[o] + input[i] * W (i*o, N)
# This algorithm takes complex input and output. There are N*N complex
# multiplications and N*(N-1) complex additions.
# Of course this algorithm is an extremely naive implementation and there are
# some ways to use the trigonometric properties of the coefficients to find
# some decompositions that can accelerate the calculation by several orders
# of magnitude... This is a well known and studied problem. One of the
# available explanations of this process is at this url :
# www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fft.html
# Let's start with the radix-2 decimation-in-time algorithm :
def unscaled_DFT_radix2_time (N, input, output):
even_input = vector(N/2)
odd_input = vector(N/2)
even_output = vector(N/2)
odd_output = vector(N/2)
for i in range(N/2):
even_input[i] = input[2*i]
odd_input[i] = input[2*i+1]
unscaled_DFT (N/2, even_input, even_output)
unscaled_DFT (N/2, odd_input, odd_output)
for i in range(N/2):
odd_output[i] = odd_output[i] * W (i, N)
for i in range(N/2):
output[i] = even_output[i] + odd_output[i]
output[i+N/2] = even_output[i] - odd_output[i]
# This algorithm takes complex input and output.
# We divide the DFT calculation into 2 DFT calculations of size N/2
# We then do N/2 complex multiplies followed by N complex additions.
# (actually W(0,N) = 1 and W(N/4,N) = -j so we can skip a few of these complex
# multiplies... we will skip 1 for i=0 and 1 for i=N/4. Also for i=N/8 and for
# i=3*N/8 the W(i,N) values can be special-cased to implement the complex
# multiplication using only 2 real additions and 2 real multiplies)
# Also note that all the basic stages of this DFT algorithm are easily
# reversible, so we can calculate the IDFT with the same complexity.
# A variant of this is the radix-2 decimation-in-frequency algorithm :
def unscaled_DFT_radix2_freq (N, input, output):
even_input = vector(N/2)
odd_input = vector(N/2)
even_output = vector(N/2)
odd_output = vector(N/2)
for i in range(N/2):
even_input[i] = input[i] + input[i+N/2]
odd_input[i] = input[i] - input[i+N/2]
for i in range(N/2):
odd_input[i] = odd_input[i] * W (i, N)
unscaled_DFT (N/2, even_input, even_output)
unscaled_DFT (N/2, odd_input, odd_output)
for i in range(N/2):
output[2*i] = even_output[i]
output[2*i+1] = odd_output[i]
# Note that the decimation-in-time and the decimation-in-frequency varients
# have exactly the same complexity, they only do the operations in a different
# order.
# Actually, if you look at the decimation-in-time variant of the DFT, and
# reverse it to calculate an IDFT, you get something that is extremely close
# to the decimation-in-frequency DFT algorithm...
# The radix-4 algorithms are slightly more efficient : they take into account
# the fact that with complex numbers, multiplications by j and -j are also
# "free"... i.e. when you code them using real numbers, they translate into
# a few data moves but no real operation.
# Let's start with the radix-4 decimation-in-time algorithm :
def unscaled_DFT_radix4_time (N, input, output):
input_0 = vector(N/4)
input_1 = vector(N/4)
input_2 = vector(N/4)
input_3 = vector(N/4)
output_0 = vector(N/4)
output_1 = vector(N/4)
output_2 = vector(N/4)
output_3 = vector(N/4)
tmp_0 = vector(N/4)
tmp_1 = vector(N/4)
tmp_2 = vector(N/4)
tmp_3 = vector(N/4)
for i in range(N/4):
input_0[i] = input[4*i]
input_1[i] = input[4*i+1]
input_2[i] = input[4*i+2]
input_3[i] = input[4*i+3]
unscaled_DFT (N/4, input_0, output_0)
unscaled_DFT (N/4, input_1, output_1)
unscaled_DFT (N/4, input_2, output_2)
unscaled_DFT (N/4, input_3, output_3)
for i in range(N/4):
output_1[i] = output_1[i] * W (i, N)
output_2[i] = output_2[i] * W (2*i, N)
output_3[i] = output_3[i] * W (3*i, N)
for i in range(N/4):
tmp_0[i] = output_0[i] + output_2[i]
tmp_1[i] = output_0[i] - output_2[i]
tmp_2[i] = output_1[i] + output_3[i]
tmp_3[i] = output_1[i] - output_3[i]
for i in range(N/4):
output[i] = tmp_0[i] + tmp_2[i]
output[i+N/4] = tmp_1[i] - 1j * tmp_3[i]
output[i+N/2] = tmp_0[i] - tmp_2[i]
output[i+3*N/4] = tmp_1[i] + 1j * tmp_3[i]
# This algorithm takes complex input and output.
# We divide the DFT calculation into 4 DFT calculations of size N/4
# We then do 3*N/4 complex multiplies followed by 2*N complex additions.
# (actually W(0,N) = 1 and W(N/4,N) = -j so we can skip a few of these complex
# multiplies... we will skip 3 for i=0 and 1 for i=N/8. Also for i=N/8
# the remaining W(i,N) and W(3*i,N) multiplies can be implemented using only
# 2 real additions and 2 real multiplies. For i=N/16 and i=3*N/16 we can also
# optimise the W(2*i/N) multiply this way.
# If we wanted to do the same decomposition with one radix-2 decomposition
# of size N and 2 radix-2 decompositions of size N/2, the total cost would be
# N complex multiplies and 2*N complex additions. Thus we see that the
# decomposition of one DFT calculation of size N into 4 calculations of size
# N/4 using the radix-4 algorithm instead of the radix-2 algorithm saved N/4
# complex multiplies...
# The radix-4 decimation-in-frequency algorithm is similar :
def unscaled_DFT_radix4_freq (N, input, output):
input_0 = vector(N/4)
input_1 = vector(N/4)
input_2 = vector(N/4)
input_3 = vector(N/4)
output_0 = vector(N/4)
output_1 = vector(N/4)
output_2 = vector(N/4)
output_3 = vector(N/4)
tmp_0 = vector(N/4)
tmp_1 = vector(N/4)
tmp_2 = vector(N/4)
tmp_3 = vector(N/4)
for i in range(N/4):
tmp_0[i] = input[i] + input[i+N/2]
tmp_1[i] = input[i+N/4] + input[i+3*N/4]
tmp_2[i] = input[i] - input[i+N/2]
tmp_3[i] = input[i+N/4] - input[i+3*N/4]
for i in range(N/4):
input_0[i] = tmp_0[i] + tmp_1[i]
input_1[i] = tmp_2[i] - 1j * tmp_3[i]
input_2[i] = tmp_0[i] - tmp_1[i]
input_3[i] = tmp_2[i] + 1j * tmp_3[i]
for i in range(N/4):
input_1[i] = input_1[i] * W (i, N)
input_2[i] = input_2[i] * W (2*i, N)
input_3[i] = input_3[i] * W (3*i, N)
unscaled_DFT (N/4, input_0, output_0)
unscaled_DFT (N/4, input_1, output_1)
unscaled_DFT (N/4, input_2, output_2)
unscaled_DFT (N/4, input_3, output_3)
for i in range(N/4):
output[4*i] = output_0[i]
output[4*i+1] = output_1[i]
output[4*i+2] = output_2[i]
output[4*i+3] = output_3[i]
# Once again the complexity is exactly the same as for the radix-4
# decimation-in-time DFT algorithm, only the order of the operations is
# different.
# Now let us reorder the radix-4 algorithms in a different way :
#def unscaled_DFT_radix4_time (N, input, output):
# input_0 = vector(N/4)
# input_1 = vector(N/4)
# input_2 = vector(N/4)
# input_3 = vector(N/4)
# output_0 = vector(N/4)
# output_1 = vector(N/4)
# output_2 = vector(N/4)
# output_3 = vector(N/4)
# tmp_0 = vector(N/4)
# tmp_1 = vector(N/4)
# tmp_2 = vector(N/4)
# tmp_3 = vector(N/4)
#
# for i in range(N/4):
# input_0[i] = input[4*i]
# input_2[i] = input[4*i+2]
#
# unscaled_DFT (N/4, input_0, output_0)
# unscaled_DFT (N/4, input_2, output_2)
#
# for i in range(N/4):
# output_2[i] = output_2[i] * W (2*i, N)
#
# for i in range(N/4):
# tmp_0[i] = output_0[i] + output_2[i]
# tmp_1[i] = output_0[i] - output_2[i]
#
# for i in range(N/4):
# input_1[i] = input[4*i+1]
# input_3[i] = input[4*i+3]
#
# unscaled_DFT (N/4, input_1, output_1)
# unscaled_DFT (N/4, input_3, output_3)
#
# for i in range(N/4):
# output_1[i] = output_1[i] * W (i, N)
# output_3[i] = output_3[i] * W (3*i, N)
#
# for i in range(N/4):
# tmp_2[i] = output_1[i] + output_3[i]
# tmp_3[i] = output_1[i] - output_3[i]
#
# for i in range(N/4):
# output[i] = tmp_0[i] + tmp_2[i]
# output[i+N/4] = tmp_1[i] - 1j * tmp_3[i]
# output[i+N/2] = tmp_0[i] - tmp_2[i]
# output[i+3*N/4] = tmp_1[i] + 1j * tmp_3[i]
# We didn't do anything here, only reorder the operations. But now, look at the
# first part of this function, up to the calculations of tmp0 and tmp1 : this
# is extremely similar to the radix-2 decimation-in-time algorithm ! or more
# precisely, it IS the radix-2 decimation-in-time algorithm, with size N/2,
# applied on a vector representing the even input coefficients, and giving
# an output vector that is the concatenation of tmp0 and tmp1.
# This is important to notice, because this means we can now choose to
# calculate tmp0 and tmp1 using any DFT algorithm that we want, and we know
# that some of them are more efficient than radix-2...
# This leads us directly to the split-radix decimation-in-time algorithm :
def unscaled_DFT_split_radix_time (N, input, output):
even_input = vector(N/2)
input_1 = vector(N/4)
input_3 = vector(N/4)
even_output = vector(N/2)
output_1 = vector(N/4)
output_3 = vector(N/4)
tmp_0 = vector(N/4)
tmp_1 = vector(N/4)
for i in range(N/2):
even_input[i] = input[2*i]
for i in range(N/4):
input_1[i] = input[4*i+1]
input_3[i] = input[4*i+3]
unscaled_DFT (N/2, even_input, even_output)
unscaled_DFT (N/4, input_1, output_1)
unscaled_DFT (N/4, input_3, output_3)
for i in range(N/4):
output_1[i] = output_1[i] * W (i, N)
output_3[i] = output_3[i] * W (3*i, N)
for i in range(N/4):
tmp_0[i] = output_1[i] + output_3[i]
tmp_1[i] = output_1[i] - output_3[i]
for i in range(N/4):
output[i] = even_output[i] + tmp_0[i]
output[i+N/4] = even_output[i+N/4] - 1j * tmp_1[i]
output[i+N/2] = even_output[i] - tmp_0[i]
output[i+3*N/4] = even_output[i+N/4] + 1j * tmp_1[i]
# This function performs one DFT of size N/2 and two of size N/4, followed by
# N/2 complex multiplies and 3*N/2 complex additions.
# (actually W(0,N) = 1 and W(N/4,N) = -j so we can skip a few of these complex
# multiplies... we will skip 2 for i=0. Also for i=N/8 the W(i,N) and W(3*i,N)
# multiplies can be implemented using only 2 real additions and 2 real
# multiplies)
# We can similarly define the split-radix decimation-in-frequency DFT :
def unscaled_DFT_split_radix_freq (N, input, output):
even_input = vector(N/2)
input_1 = vector(N/4)
input_3 = vector(N/4)
even_output = vector(N/2)
output_1 = vector(N/4)
output_3 = vector(N/4)
tmp_0 = vector(N/4)
tmp_1 = vector(N/4)
for i in range(N/2):
even_input[i] = input[i] + input[i+N/2]
for i in range(N/4):
tmp_0[i] = input[i] - input[i+N/2]
tmp_1[i] = input[i+N/4] - input[i+3*N/4]
for i in range(N/4):
input_1[i] = tmp_0[i] - 1j * tmp_1[i]
input_3[i] = tmp_0[i] + 1j * tmp_1[i]
for i in range(N/4):
input_1[i] = input_1[i] * W (i, N)
input_3[i] = input_3[i] * W (3*i, N)
unscaled_DFT (N/2, even_input, even_output)
unscaled_DFT (N/4, input_1, output_1)
unscaled_DFT (N/4, input_3, output_3)
for i in range(N/2):
output[2*i] = even_output[i]
for i in range(N/4):
output[4*i+1] = output_1[i]
output[4*i+3] = output_3[i]
# The complexity is again the same as for the decimation-in-time variant.
# Now let us now summarize our various algorithms for DFT decomposition :
# radix-2 : DFT(N) -> 2*DFT(N/2) using N/2 multiplies and N additions
# radix-4 : DFT(N) -> 4*DFT(N/2) using 3*N/4 multiplies and 2*N additions
# split-radix : DFT(N) -> DFT(N/2) + 2*DFT(N/4) using N/2 muls and 3*N/2 adds
# (we are always speaking of complex multiplies and complex additions... a
# complex addition is implemented with 2 real additions, and a complex
# multiply is implemented with either 2 adds and 4 muls or 3 adds and 3 muls,
# so we will keep a separate count of these)
# If we want to take into account the special values of W(i,N), we can remove
# a few complex multiplies. Supposing N>=16 we can remove :
# radix-2 : remove 2 complex multiplies, simplify 2 others
# radix-4 : remove 4 complex multiplies, simplify 4 others
# split-radix : remove 2 complex multiplies, simplify 2 others
# This gives the following table for the complexity of a complex DFT :
# N real additions real multiplies complex multiplies
# 1 0 0 0
# 2 4 0 0
# 4 16 0 0
# 8 52 4 0
# 16 136 8 4
# 32 340 20 16
# 64 808 40 52
# 128 1876 84 144
# 256 4264 168 372
# 512 9556 340 912
# 1024 21160 680 2164
# 2048 46420 1364 5008
# 4096 101032 2728 11380
# 8192 218452 5460 25488
# 16384 469672 10920 56436
# 32768 1004884 21844 123792
# 65536 2140840 43688 269428
# If we chose to implement complex multiplies with 3 real muls + 3 real adds,
# then these results are consistent with the table at the end of the
# www.cmlab.csie.ntu.edu.tw DFT tutorial that I mentionned earlier.
# Now another important case for the DFT is the one where the inputs are
# real numbers instead of complex ones. We have to find ways to optimize for
# this important case.
# If the DFT inputs are real-valued, then the DFT outputs have nice properties
# too : output[0] and output[N/2] will be real numbers, and output[N-i] will
# be the conjugate of output[i] for i in 0...N/2-1
# Likewise, if the DFT inputs are purely imaginary numbers, then the DFT
# outputs will have special properties too : output[0] and output[N/2] will be
# purely imaginary, and output[N-i] will be the opposite of the conjugate of
# output[i] for i in 0...N/2-1
# We can use these properties to calculate two real-valued DFT at once :
def two_real_unscaled_DFT (N, input1, input2, output1, output2):
input = vector(N)
output = vector(N)
for i in range(N):
input[i] = input1[i] + 1j * input2[i]
unscaled_DFT (N, input, output)
output1[0] = output[0].real + 0j
output2[0] = output[0].imag + 0j
for i in range(N/2)[1:]:
output1[i] = 0.5 * (output[i] + conjugate(output[N-i]))
output2[i] = -0.5j * (output[i] - conjugate(output[N-i]))
output1[N-i] = conjugate(output1[i])
output2[N-i] = conjugate(output2[i])
output1[N/2] = output[N/2].real + 0j
output2[N/2] = output[N/2].imag + 0j
# This routine does a total of N-2 complex additions and N-2 complex
# multiplies by 0.5
# This routine can also be inverted to calculate the IDFT of two vectors at
# once if we know that the outputs will be real-valued.
# If we have only one real-valued DFT calculation to do, we can still cut this
# calculation in several parts using one of the decimate-in-time methods
# (so that the different parts are still real-valued)
# As with complex DFT calculations, the best method is to use a split radix.
# There are a lot of symetries in the DFT outputs that we can exploit to
# reduce the number of operations...
def real_unscaled_DFT_split_radix_time_1 (N, input, output):
even_input = vector(N/2)
even_output = vector(N/2)
input_1 = vector(N/4)
output_1 = vector(N/4)
input_3 = vector(N/4)
output_3 = vector(N/4)
tmp_0 = vector(N/4)
tmp_1 = vector(N/4)
for i in range(N/2):
even_input[i] = input[2*i]
for i in range(N/4):
input_1[i] = input[4*i+1]
input_3[i] = input[4*i+3]
unscaled_DFT (N/2, even_input, even_output)
# this is again a real DFT !
# we will only use even_output[i] for i in 0 ... N/4 included. we know that
# even_output[N/2-i] is the conjugate of even_output[i]... also we know
# that even_output[0] and even_output[N/4] are purely real.
unscaled_DFT (N/4, input_1, output_1)
unscaled_DFT (N/4, input_3, output_3)
# these are real DFTs too... with symetries in the outputs... once again
tmp_0[0] = output_1[0] + output_3[0] # real numbers
tmp_1[0] = output_1[0] - output_3[0] # real numbers
tmp__0 = (output_1[N/8] + output_3[N/8]) * sqrt(0.5) # real numbers
tmp__1 = (output_1[N/8] - output_3[N/8]) * sqrt(0.5) # real numbers
tmp_0[N/8] = tmp__1 - 1j * tmp__0 # real + 1j * real
tmp_1[N/8] = tmp__0 - 1j * tmp__1 # real + 1j * real
for i in range(N/8)[1:]:
output_1[i] = output_1[i] * W (i, N)
output_3[i] = output_3[i] * W (3*i, N)
tmp_0[i] = output_1[i] + output_3[i]
tmp_1[i] = output_1[i] - output_3[i]
tmp_0[N/4-i] = -1j * conjugate(tmp_1[i])
tmp_1[N/4-i] = -1j * conjugate(tmp_0[i])
output[0] = even_output[0] + tmp_0[0] # real numbers
output[N/4] = even_output[N/4] - 1j * tmp_1[0] # real + 1j * real
output[N/2] = even_output[0] - tmp_0[0] # real numbers
output[3*N/4] = even_output[N/4] + 1j * tmp_1[0] # real + 1j * real
for i in range(N/4)[1:]:
output[i] = even_output[i] + tmp_0[i]
output[i+N/4] = conjugate(even_output[N/4-i]) - 1j * tmp_1[i]
output[N-i] = conjugate(output[i])
output[3*N/4-i] = conjugate(output[i+N/4])
# This function performs one real DFT of size N/2 and two real DFT of size
# N/4, followed by 6 real additions, 2 real multiplies, 3*N/4-4 complex
# additions and N/4-2 complex multiplies.
# We can also try to combine the two real DFT of size N/4 into a single complex
# DFT :
def real_unscaled_DFT_split_radix_time_2 (N, input, output):
even_input = vector(N/2)
even_output = vector(N/2)
odd_input = vector(N/4)
odd_output = vector(N/4)
tmp_0 = vector(N/4)
tmp_1 = vector(N/4)
for i in range(N/2):
even_input[i] = input[2*i]
for i in range(N/4):
odd_input[i] = input[4*i+1] + 1j * input[4*i+3]
unscaled_DFT (N/2, even_input, even_output)
# this is again a real DFT !
# we will only use even_output[i] for i in 0 ... N/4 included. we know that
# even_output[N/2-i] is the conjugate of even_output[i]... also we know
# that even_output[0] and even_output[N/4] are purely real.
unscaled_DFT (N/4, odd_input, odd_output)
# but this one is a complex DFT so no special properties here
output_1 = odd_output[0].real
output_3 = odd_output[0].imag
tmp_0[0] = output_1 + output_3 # real numbers
tmp_1[0] = output_1 - output_3 # real numbers
output_1 = odd_output[N/8].real
output_3 = odd_output[N/8].imag
tmp__0 = (output_1 + output_3) * sqrt(0.5) # real numbers
tmp__1 = (output_1 - output_3) * sqrt(0.5) # real numbers
tmp_0[N/8] = tmp__1 - 1j * tmp__0 # real + 1j * real
tmp_1[N/8] = tmp__0 - 1j * tmp__1 # real + 1j * real
for i in range(N/8)[1:]:
output_1 = odd_output[i] + conjugate(odd_output[N/4-i])
output_3 = odd_output[i] - conjugate(odd_output[N/4-i])
output_1 = output_1 * 0.5 * W (i, N)
output_3 = output_3 * -0.5j * W (3*i, N)
tmp_0[i] = output_1 + output_3
tmp_1[i] = output_1 - output_3
tmp_0[N/4-i] = -1j * conjugate(tmp_1[i])
tmp_1[N/4-i] = -1j * conjugate(tmp_0[i])
output[0] = even_output[0] + tmp_0[0] # real numbers
output[N/4] = even_output[N/4] - 1j * tmp_1[0] # real + 1j * real
output[N/2] = even_output[0] - tmp_0[0] # real numbers
output[3*N/4] = even_output[N/4] + 1j * tmp_1[0] # real + 1j * real
for i in range(N/4)[1:]:
output[i] = even_output[i] + tmp_0[i]
output[i+N/4] = conjugate(even_output[N/4-i]) - 1j * tmp_1[i]
output[N-i] = conjugate(output[i])
output[3*N/4-i] = conjugate(output[i+N/4])
# This function performs one real DFT of size N/2 and one complex DFT of size
# N/4, followed by 6 real additions, 2 real multiplies, N-6 complex additions
# and N/4-2 complex multiplies.
# After comparing the performance, it turns out that for real-valued DFT, the
# version of the algorithm that subdivides the calculation into one real
# DFT of size N/2 and two real DFT of size N/4 is the most efficient one.
# The other version gives exactly the same number of multiplies and a few more
# real additions.
# Now we can also try the decimate-in-frequency method for a real-valued DFT.
# Using the split-radix algorithm, and by taking into account the symetries of
# the outputs :
def real_unscaled_DFT_split_radix_freq (N, input, output):
even_input = vector(N/2)
input_1 = vector(N/4)
even_output = vector(N/2)
output_1 = vector(N/4)
tmp_0 = vector(N/4)
tmp_1 = vector(N/4)
for i in range(N/2):
even_input[i] = input[i] + input[i+N/2]
for i in range(N/4):
tmp_0[i] = input[i] - input[i+N/2]
tmp_1[i] = input[i+N/4] - input[i+3*N/4]
for i in range(N/4):
input_1[i] = tmp_0[i] - 1j * tmp_1[i]
for i in range(N/4):
input_1[i] = input_1[i] * W (i, N)
unscaled_DFT (N/2, even_input, even_output)
# This is still a real-valued DFT
unscaled_DFT (N/4, input_1, output_1)
# But that one is a complex-valued DFT
for i in range(N/2):
output[2*i] = even_output[i]
for i in range(N/4):
output[4*i+1] = output_1[i]
output[N-1-4*i] = conjugate(output_1[i])
# I think this implementation is much more elegant than the decimate-in-time
# version ! It looks very much like the complex-valued version, all we had to
# do was remove one of the complex-valued internal DFT calls because we could
# deduce the outputs by using the symetries of the problem.
# As for performance, we did N real additions, N/4 complex multiplies (a bit
# less actually, because W(0,N) = 1 and W(N/8,N) is a "simple" multiply), then
# one real DFT of size N/2 and one complex DFT of size N/4.
# It turns out that even if the methods are so different, the number of
# operations is exactly the same as for the best of the two decimation-in-time
# methods that we tried.
# This gives us the following performance for real-valued DFT :
# N real additions real multiplies complex multiplies
# 2 2 0 0
# 4 6 0 0
# 8 20 2 0
# 16 54 4 2
# 32 140 10 8
# 64 342 20 26
# 128 812 42 72
# 256 1878 84 186
# 512 4268 170 456
# 1024 9558 340 1082
# 2048 21164 682 2504
# 4096 46422 1364 5690
# 8192 101036 2730 12744
# 16384 218454 5460 28218
# 32768 469676 10922 61896
# 65536 1004886 21844 134714
# As an example, this is an implementation of the real-valued DFT8 :
def DFT8 (input, output):
even_0 = input[0] + input[4]
even_1 = input[1] + input[5]
even_2 = input[2] + input[6]
even_3 = input[3] + input[7]
tmp_0 = even_0 + even_2
tmp_1 = even_0 - even_2
tmp_2 = even_1 + even_3
tmp_3 = even_1 - even_3
output[0] = tmp_0 + tmp_2
output[2] = tmp_1 - 1j * tmp_3
output[4] = tmp_0 - tmp_2
odd_0_r = input[0] - input[4]
odd_0_i = input[2] - input[6]
tmp_0 = input[1] - input[5]
tmp_1 = input[3] - input[7]
odd_1_r = (tmp_0 - tmp_1) * sqrt(0.5)
odd_1_i = (tmp_0 + tmp_1) * sqrt(0.5)
output[1] = (odd_0_r + odd_1_r) - 1j * (odd_0_i + odd_1_i)
output[5] = (odd_0_r - odd_1_r) - 1j * (odd_0_i - odd_1_i)
output[3] = conjugate(output[5])
output[6] = conjugate(output[2])
output[7] = conjugate(output[1])
# Also a basic implementation of the real-valued DFT4 :
def DFT4 (input, output):
tmp_0 = input[0] + input[2]
tmp_1 = input[0] - input[2]
tmp_2 = input[1] + input[3]
tmp_3 = input[1] - input[3]
output[0] = tmp_0 + tmp_2
output[1] = tmp_1 - 1j * tmp_3
output[2] = tmp_0 - tmp_2
output[3] = tmp_1 + 1j * tmp_3
# A similar idea might be used to calculate only the real part of the output
# of a complex DFT : we take an DFT algorithm for real inputs and complex
# outputs and we simply reverse it. The resulting algorithm will only work
# with inputs that satisfy the conjugaison rule (input[i] is the conjugate of
# input[N-i]) so we can do a first pass to modify the input so that it follows
# this rule. An example implementation is as follows (adapted from the
# unscaled_DFT_split_radix_time algorithm) :
def complex2real_unscaled_DFT_split_radix_time (N, input, output):
even_input = vector(N/2)
input_1 = vector(N/4)
even_output = vector(N/2)
output_1 = vector(N/4)
for i in range(N/2):
even_input[i] = input[2*i]
for i in range(N/4):
input_1[i] = input[4*i+1] + conjugate(input[N-1-4*i])
unscaled_DFT (N/2, even_input, even_output)
unscaled_DFT (N/4, input_1, output_1)
for i in range(N/4):
output_1[i] = output_1[i] * W (i, N)
for i in range(N/4):
output[i] = even_output[i] + output_1[i].real
output[i+N/4] = even_output[i+N/4] + output_1[i].imag
output[i+N/2] = even_output[i] - output_1[i].real
output[i+3*N/4] = even_output[i+N/4] - output_1[i].imag
# This algorithm does N/4 complex additions, N/4-1 complex multiplies
# (including one "simple" multiply for i=N/8), N real additions, one
# "complex-to-real" DFT of size N/2, and one complex DFT of size N/4.
# Also, in the complex DFT of size N/4, we do not care about the imaginary
# part of output_1[0], which in practice allows us to save one real addition.
# This gives us the following performance for complex DFT with real outputs :
# N real additions real multiplies complex multiplies
# 1 0 0 0
# 2 2 0 0
# 4 8 0 0
# 8 25 2 0
# 16 66 4 2
# 32 167 10 8
# 64 400 20 26
# 128 933 42 72
# 256 2126 84 186
# 512 4771 170 456
# 1024 10572 340 1082
# 2048 23201 682 2504
# 4096 50506 1364 5690
# 8192 109215 2730 12744
# 16384 234824 5460 28218
# 32768 502429 10922 61896
# 65536 1070406 21844 134714
# Now let's talk about the DCT algorithm. The canonical definition for it is
# as follows :
def C (k, N):
return cos ((k*pi)/(2*N))
def unscaled_DCT (N, input, output):
for o in range(N): # o is output index
output[o] = 0
for i in range(N): # i is input index
output[o] = output[o] + input[i] * C ((2*i+1)*o, N)
# This trivial algorithm uses N*N multiplications and N*(N-1) additions.
# One possible decomposition on this calculus is to use the fact that C (i, N)
# and C (2*N-i, N) are opposed. This can lead to this decomposition :
#def unscaled_DCT (N, input, output):
# even_input = vector (N)
# odd_input = vector (N)
# even_output = vector (N)
# odd_output = vector (N)
#
# for i in range(N/2):
# even_input[i] = input[i] + input[N-1-i]
# odd_input[i] = input[i] - input[N-1-i]
#
# unscaled_DCT (N, even_input, even_output)
# unscaled_DCT (N, odd_input, odd_output)
#
# for i in range(N/2):
# output[2*i] = even_output[2*i]
# output[2*i+1] = odd_output[2*i+1]
# Now the even part can easily be calculated : by looking at the C(k,N)
# formula, we see that the even part is actually an unscaled DCT of size N/2.
# The odd part looks like a DCT of size N/2, but the coefficients are
# actually C ((2*i+1)*(2*o+1), 2*N) instead of C ((2*i+1)*o, N).
# We use a trigonometric relation here :
# 2 * C ((a+b)/2, N) * C ((a-b)/2, N) = C (a, N) + C (b, N)
# Thus with a = (2*i+1)*o and b = (2*i+1)*(o+1) :
# 2 * C((2*i+1)*(2*o+1),2N) * C(2*i+1,2N) = C((2*i+1)*o,N) + C((2*i+1)*(o+1),N)
# This leads us to the Lee DCT algorithm :
def unscaled_DCT_Lee (N, input, output):
even_input = vector(N/2)
odd_input = vector(N/2)
even_output = vector(N/2)
odd_output = vector(N/2)
for i in range(N/2):
even_input[i] = input[i] + input[N-1-i]
odd_input[i] = input[i] - input[N-1-i]
for i in range(N/2):
odd_input[i] = odd_input[i] * (0.5 / C (2*i+1, N))
unscaled_DCT (N/2, even_input, even_output)
unscaled_DCT (N/2, odd_input, odd_output)
for i in range(N/2-1):
odd_output[i] = odd_output[i] + odd_output[i+1]
for i in range(N/2):
output[2*i] = even_output[i]
output[2*i+1] = odd_output[i];
# Notes about this algorithm :
# The algorithm can be easily inverted to calculate the IDCT instead :
# each of the basic stages are separately inversible...
# This function does N adds, then N/2 muls, then 2 recursive calls with
# size N/2, then N/2-1 adds again. If we apply it recursively, the total
# number of operations will be N*log2(N)/2 multiplies and N*(3*log2(N)/2-1) + 1
# additions. So this is much faster than the canonical algorithm.
# Some of the multiplication coefficients 0.5/cos(...) can get quite large.
# This means that a small error in the input will give a large error on the
# output... For a DCT of size N the biggest coefficient will be at i=N/2-1
# and it will be slightly more than N/pi which can be large for large N's.
# In the IDCT however, the multiplication coefficients for the reverse
# transformation are of the form 2*cos(...) so they can not get big and there
# is no accuracy problem.
# You can find another description of this algorithm at
# http://www.intel.com/drg/mmx/appnotes/ap533.htm
# Another idea is to observe that the DCT calculation can be made to look like
# the DFT calculation : C (k, N) is the real part of W (k, 4*N) or W (-k, 4*N).
# We can use this idea translate the DCT algorithm into a call to the DFT
# algorithm :
def unscaled_DCT_DFT (N, input, output):
DFT_input = vector (4*N)
DFT_output = vector (4*N)
for i in range(N):
DFT_input[2*i+1] = input[i]
#DFT_input[4*N-2*i-1] = input[i] # We could use this instead
unscaled_DFT (4*N, DFT_input, DFT_output)
for i in range(N):
output[i] = DFT_output[i].real
# We can then use our knowledge of the DFT calculation to optimize for this
# particular case. For example using the radix-2 decimation-in-time method :
#def unscaled_DCT_DFT (N, input, output):
# DFT_input = vector (2*N)
# DFT_output = vector (2*N)
#
# for i in range(N):
# DFT_input[i] = input[i]
# #DFT_input[2*N-1-i] = input[i] # We could use this instead
#
# unscaled_DFT (2*N, DFT_input, DFT_output)
#
# for i in range(N):
# DFT_output[i] = DFT_output[i] * W (i, 4*N)
#
# for i in range(N):
# output[i] = DFT_output[i].real
# This leads us to the AAN implementation of the DCT algorithm : if we set
# both DFT_input[i] and DFT_input[2*N-1-i] to input[i], then the imaginary
# parts of W(2*i+1) and W(-2*i-1) will compensate, and output_DFT[i] will
# already be a real after the multiplication by W(i,4*N). Which means that
# before the multiplication, it is the product of a real number and W(-i,4*N).
# This leads to the following code, called the AAN algorithm :
def unscaled_DCT_AAN (N, input, output):
DFT_input = vector (2*N)
DFT_output = vector (2*N)
for i in range(N):
DFT_input[i] = input[i]
DFT_input[2*N-1-i] = input[i]
symetrical_unscaled_DFT (2*N, DFT_input, DFT_output)
for i in range(N):
output[i] = DFT_output[i].real * (0.5 / C (i, N))
# Notes about the AAN algorithm :
# The cost of this function is N real multiplies and a DFT of size 2*N. The
# DFT to calculate has special properties : the inputs are real and symmetric.
# Also, we only need to calculate the real parts of the N first DFT outputs.
# We can try to take advantage of all that.
# We can invert this algorithm to calculate the IDCT. The final multiply
# stage is trivially invertible. The DFT stage is invertible too, but we have
# to take into account the special properties of this particular DFT for that.
# Once again we have to take care of numerical precision for the DFT : the
# output coefficients can get large, so that a small error in the input will
# give a large error on the output... For a DCT of size N the biggest
# coefficient will be at i=N/2-1 and it will be slightly more than N/pi
# You can find another description of this algorithm at this url :
# www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fastdct.html
# (It is the same server where we already found a description of the fast DFT)
# To optimize the DFT calculation, we can take a lot of specific things into
# account : the input is real and symetric, and we only care about the real
# part of the output. Also, we only care about the N first output coefficients,
# but that one does not save operations actually, because the other
# coefficients are the conjugates of the ones we look anyway.
# One useful way to use the symmetry of the input is to use the radix-2
# decimation-in-frequency algorithm. We can write a version of
# unscaled_DFT_radix2_freq for the case where the input is symmetrical :
# we have removed a few additions in the first stages because even_input
# is symmetrical and odd_input is antisymetrical. Also, we have modified the
# odd_input vector so that the second half of it is set to zero and the real
# part of the DFT output is not modified. After that modification, the second
# part of the odd_input was null so we used the radix-2 decimation-in-frequency
# again on the odd DFT. Also odd_output is symmetrical because input is real...
def symetrical_unscaled_DFT (N, input, output):
even_input = vector(N/2)
odd_tmp = vector(N/2)
odd_input = vector(N/2)
even_output = vector(N/2)
odd_output = vector(N/2)
for i in range(N/4):
even_input[N/2-i-1] = even_input[i] = input[i] + input[N/2-1-i]
for i in range(N/4):
odd_tmp[i] = input[i] - input[N/2-1-i]
odd_input[0] = odd_tmp[0]
for i in range(N/4)[1:]:
odd_input[i] = (odd_tmp[i] + odd_tmp[i-1]) * W (i, N)
unscaled_DFT (N/2, even_input, even_output)
# symmetrical real inputs, real outputs
unscaled_DFT (N/4, odd_input, odd_output)
# complex inputs, real outputs
for i in range(N/2):
output[2*i] = even_output[i]
for i in range(N/4):
output[N-1-4*i] = output[4*i+1] = odd_output[i]
# This procedure takes 3*N/4-1 real additions and N/2-3 real multiplies,