Skip to content

RotBotSlicer/Transform

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 

Repository files navigation

3D_Printer

Introduction

This is an algorithm for a 3D printer with new printer kinematics. With this new printer kinematics, overhangs with 90° and more can be printed without support material. The two scripts can be used to generate the G-Code for the RotBot printer kinematics from a STL-file. The algorithm is based on a geometric transformation of the body. The ideas are summarized in REFERENZ (tbd).

The script Transformation_STL.py takes a path to a STL-file as input, generates a mesh of a transformed object and saves this mesh in a STL file.

The script Backtransformation_GCode.py takes a path to a G-Code as input, generates G-Code for the backtransformed object and saves the G-Code in a text file.

To generate G-Code from the STL file, different slicer software can be used, e.g. https://ultimaker.com/software/ultimaker-cura or https://www.simplify3d.com/

Transformation of the STL file

The transformation of the STL file has the following parameters:

  • file_path: path to the STL file of the body
  • dir_transformed: path, where to save the STL file of the transformed body
  • transformation_type: 'inward' or 'outward' transformation
  • nb_iterations: number iterations for the triangulation refinement

Back-Transformation of the G-Code

The back-transformation of the G-Code has the following parameters:

  • file_path: path to the G-Code
  • dir_backtransformed: path, where the transformed G-Code should be saved
  • transformation_type: 'inward' or 'outward' transformation
  • angle_type: 'radial' or 'tangential' orientation of the print head
  • max_length: maximal length of a segment in mm
  • x_shift: shift of (final) G-code in x-direction
  • y_shift: shift of (final) G-code in y-direction
  • z_desired: desired height in z-direction
  • e_parallel: extrusion error to correct in parallel direction
  • e_perpenticular: extrusion error to correct in perpendicular direction

License

The algorithm is open source and licensed under the GNU General Public License Version 3.0 (https://www.gnu.org/licenses/gpl-3.0.en.html).

Citation

If you use the algorithm, please consider citing the following paper:

@article{wuethrich2021slicing,
  title        = {Slicing Strategy for a novel 4-Axis 3D Printing Process to Print Overhangs without Support Material},
  author       = {Michael Wüthrich, Maurus Gubser, Wilfried J. Elspass, Christian Jaeger},
  journal      = {Applied Sciences},
  volume       = {},
  number       = {},
  pages        = {},
  year         = {2021},
  publisher    = {MDPI}
}

About

Algorithm for 3D printer with new kinematics

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages