forked from vchoutas/smplx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_layers.py
181 lines (154 loc) · 6.96 KB
/
demo_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]
import os.path as osp
import argparse
import numpy as np
import torch
import smplx
def main(model_folder,
model_type='smplx',
ext='npz',
gender='neutral',
plot_joints=False,
num_betas=10,
sample_shape=True,
sample_expression=True,
num_expression_coeffs=10,
plotting_module='pyrender',
use_face_contour=False):
model = smplx.build_layer(
model_folder, model_type=model_type,
gender=gender, use_face_contour=use_face_contour,
num_betas=num_betas,
num_expression_coeffs=num_expression_coeffs,
ext=ext)
print(model)
betas, expression = None, None
if sample_shape:
betas = torch.randn([1, model.num_betas], dtype=torch.float32)
if sample_expression:
expression = torch.randn(
[1, model.num_expression_coeffs], dtype=torch.float32)
output = model(betas=betas, expression=expression,
return_verts=True)
vertices = output.vertices.detach().cpu().numpy().squeeze()
joints = output.joints.detach().cpu().numpy().squeeze()
print('Vertices shape =', vertices.shape)
print('Joints shape =', joints.shape)
if plotting_module == 'pyrender':
import pyrender
import trimesh
vertex_colors = np.ones([vertices.shape[0], 4]) * [0.3, 0.3, 0.3, 0.8]
tri_mesh = trimesh.Trimesh(vertices, model.faces,
vertex_colors=vertex_colors)
mesh = pyrender.Mesh.from_trimesh(tri_mesh)
scene = pyrender.Scene()
scene.add(mesh)
if plot_joints:
sm = trimesh.creation.uv_sphere(radius=0.005)
sm.visual.vertex_colors = [0.9, 0.1, 0.1, 1.0]
tfs = np.tile(np.eye(4), (len(joints), 1, 1))
tfs[:, :3, 3] = joints
joints_pcl = pyrender.Mesh.from_trimesh(sm, poses=tfs)
scene.add(joints_pcl)
pyrender.Viewer(scene, use_raymond_lighting=True)
elif plotting_module == 'matplotlib':
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
mesh = Poly3DCollection(vertices[model.faces], alpha=0.1)
face_color = (1.0, 1.0, 0.9)
edge_color = (0, 0, 0)
mesh.set_edgecolor(edge_color)
mesh.set_facecolor(face_color)
ax.add_collection3d(mesh)
ax.scatter(joints[:, 0], joints[:, 1], joints[:, 2], color='r')
if plot_joints:
ax.scatter(joints[:, 0], joints[:, 1], joints[:, 2], alpha=0.1)
plt.show()
elif plotting_module == 'open3d':
import open3d as o3d
mesh = o3d.geometry.TriangleMesh()
mesh.vertices = o3d.utility.Vector3dVector(
vertices)
mesh.triangles = o3d.utility.Vector3iVector(model.faces)
mesh.compute_vertex_normals()
mesh.paint_uniform_color([0.3, 0.3, 0.3])
geometry = [mesh]
if plot_joints:
joints_pcl = o3d.geometry.PointCloud()
joints_pcl.points = o3d.utility.Vector3dVector(joints)
joints_pcl.paint_uniform_color([0.7, 0.3, 0.3])
geometry.append(joints_pcl)
o3d.visualization.draw_geometries(geometry)
else:
raise ValueError('Unknown plotting_module: {}'.format(plotting_module))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='SMPL-X Demo')
parser.add_argument('--model-folder', required=True, type=str,
help='The path to the model folder')
parser.add_argument('--model-type', default='smplx', type=str,
choices=['smpl', 'smplh', 'smplx', 'mano', 'flame'],
help='The type of model to load')
parser.add_argument('--gender', type=str, default='neutral',
help='The gender of the model')
parser.add_argument('--num-betas', default=10, type=int,
dest='num_betas',
help='Number of shape coefficients.')
parser.add_argument('--num-expression-coeffs', default=10, type=int,
dest='num_expression_coeffs',
help='Number of expression coefficients.')
parser.add_argument('--plotting-module', type=str, default='pyrender',
dest='plotting_module',
choices=['pyrender', 'matplotlib', 'open3d'],
help='The module to use for plotting the result')
parser.add_argument('--ext', type=str, default='npz',
help='Which extension to use for loading')
parser.add_argument('--plot-joints', default=False,
type=lambda arg: arg.lower() in ['true', '1'],
help='The path to the model folder')
parser.add_argument('--sample-shape', default=True,
dest='sample_shape',
type=lambda arg: arg.lower() in ['true', '1'],
help='Sample a random shape')
parser.add_argument('--sample-expression', default=True,
dest='sample_expression',
type=lambda arg: arg.lower() in ['true', '1'],
help='Sample a random expression')
parser.add_argument('--use-face-contour', default=False,
type=lambda arg: arg.lower() in ['true', '1'],
help='Compute the contour of the face')
args = parser.parse_args()
model_folder = osp.expanduser(osp.expandvars(args.model_folder))
model_type = args.model_type
plot_joints = args.plot_joints
use_face_contour = args.use_face_contour
gender = args.gender
ext = args.ext
plotting_module = args.plotting_module
num_betas = args.num_betas
num_expression_coeffs = args.num_expression_coeffs
sample_shape = args.sample_shape
sample_expression = args.sample_expression
main(model_folder, model_type, ext=ext,
gender=gender, plot_joints=plot_joints,
num_betas=num_betas,
num_expression_coeffs=num_expression_coeffs,
sample_shape=sample_shape,
sample_expression=sample_expression,
plotting_module=plotting_module,
use_face_contour=use_face_contour)