Skip to content

This dataset contains weather data from 2 regions in Algeria over the period of 3 months and the goal is to predict if a fire occurred at any day within that period. To create a real-world scenario, we want to predict if there will be a fire in a future date as provided by the dataset. The fire prediction is based on weather data collected from …

Notifications You must be signed in to change notification settings

RudraxDave/ForestFires_Prediction

Repository files navigation

EE559_Project

  • 2-class problem

  • Dataset (# data pts.)

    • training: 184
      • Class 0: 69 (37.5%)
      • Class 1: 115 (62.5%)
    • test: 60
  • Sequential Backward Selection

    • Most contributing features:
    • ISI > Rain > DMC > FFMC > DC > RH > BUI > Ws > Temperature
  • Required reference systems

    • Trivial system
      python3 trivial.py

      • Test F1-score: 0.5
      • Test Accuracy: 0.5
    • Baseline system
      python3 baseline.py

      • Drop "Date"
      • Test F1-score: 0.6286
      • Test Accuracy: 0.7833
  • Technique 1: Perceptron Learning (Drop "Date")
    python3 perceptron.py --M 4 --epoch 200 --plot_title perceptron (M-fold cross-validation)

    • Val F1-score: 0.9113
    • Val Accuracy: 0.9076
    • Test F1-score: 0.8846
    • Test Accuracy: 0.9

    python3 perceptron.py --M 4 --epoch 200 --normalization --plot_title p_norm

    • Apply min-max normalization to all features
    • Val F1-score: 0.9405
    • Val Accuracy: 0.9457
    • Test F1-score: 0.8679
    • Test Accuracy: 0.8833

    python3 perceptron.py --M 4 --epoch 200 --standardization --plot_title p_std

    • Apply standardization to all features
    • Val F1-score: 0.9368
    • Val Accuracy: 0.9457
    • Test F1-score: 0.92
    • Test Accuracy: 0.93

    python3 perceptron.py --M 4 --epoch 200 --standardization --feat_reduction --plot_title p_feat_reduct

    • Four least contributing features: Temperature -> Ws -> BUI -> RH
    • Drop (1,2,3,4) features
    • Val F1-score: (0.9725, 0.9805, 0.9763, 0.9875)
    • Val Accuracy: (0.9674, 0.9728, 0.9728, 0.9837)
    • Test F1-score: (0.9583, 0.9787, 0.9388, 0.9583)
    • Test Accuracy: (0.9667, 0.9833, 0.95, 0.9667)

    python3 perceptron.py --standardization --feat_reduction --extra_feat --plot_title p_add_1_feat

    • Val F1-score: 0.9882
    • Val Accuracy: 0.9783
    • Test F1-score: 0.9787
    • Test Accuracy: 0.9833
  • Technique 2: KNN Classifier (Drop "Date", with Standardization)
    python3 kNN.py --M 4 --k 7 --plot_title kNN

    • The following results are for k = (2, 3, 4, 5, 6, 7, 8)
    • Val F1-score: (0.8287, 0.8532, 0.8605, 0.8745, 0.886, 0.8678, 0.8739)
    • Val Accuracy: (0.8478, 0.8641, 0.8696, 0.875, 0.875, 0.8641, 0.8804)
    • Test F1-score: (0.7, 0.8444, 0.8095, 0.8182, 0.8372, 0.8444, 0.8182)
    • Test Accuracy: (0.8, 0.8833, 0.8667, 0.8667, 0.8833, 0.8833, 0.8667)

    python3 kNN.py --M 4 --k 7 --feat_reduction --plot_title kNN_feat_reduct

    • Four least contributing features: Temperature -> Ws -> BUI -> RH
    • Drop (1,2,3,4) features
    • Val F1-score: (0.8898, 0.9108, 0.9236, 0.9313)
    • Val Accuracy: (0.8967, 0.9076, 0.9293, 0.9239)
    • Test F1-score: (0.8444, 0.8182, 0.8444, 0.8182)
    • Test Accuracy: (0.8833, 0.8667, 0.8833, 0.8667)

    python3 kNN.py --extra_feat --feat_reduction --plot_title kNN_add_1_feat

    • Drop temperature
    • Val F1-score: 0.9767
    • Val Accuracy: 0.9565
    • Test F1-score: 0.8085
    • Test Accuracy: 0.85

    python3 kNN.py --extra_feat --plot_title kNN_add_1_feat

    • Val F1-score: 0.9767
    • Val Accuracy: 0.9565
    • Test F1-score: 0.8511
    • Test Accuracy: 0.8833
  • Technique 3: MSE Classifier (Drop "Date")
    python3 MSE.py --plot_title MSE (b=1 for all data pts)

    • Val F1-score: 0.9942
    • Val Accuracy: 0.9891
    • Test F1-score: 1
    • Test Accuracy: 1
  • Technique 4: SVM (Drop "Date")
    python3 SVM.py --Linear SVM

    • Train F1_score= 0.8771929824561403
    • Train Accuracy= 0.8478260869565217
    • Test F1_score= 0.8571428571428571
    • Test Accuracy= 0.8666666666666667

    python3 SVM.py --RBF SVM -Test RBF Accuracy= 0.8333333333333334 -Test Linear Accuracy= 0.85 -Test RBF F1_score= 0.8214285714285715 -Test Linear F1_score= 0.8363636363636363

    python3 SVM.ipynb --feat_reduction --plot_title

    • Four least contributing features: Temperature -> Ws -> BUI -> RH
    • Drop (1,2,3,4) features
    • Test F1-score RBF: (0.8214, 0.8214, 0.8214, 0.8070)
    • Test Accuracy RBF: (0.8333, 0.8333, 0.8333, 0.8166)
    • Test F1-score Linear: (0.83636, 0.83636, 0.83636, 0.8214)
    • Test Accuracy Linear: (0.85, 0.85, 0.85, 0.8333)
  • Technique 5: Logistic Regression (Drop "Date")
    python3 Logistic Regression.ipynb

    • Train Logistic regression F1_score= 0.9385964912280702
    • Train Logistic regression Accuracy= 0.9239130434782609
    • Test Logistic regression F1_score= 0.8260869565217391
    • Test Logistic regression Accuracy= 0.8666666666666667

    python3 Logistic Regression.ipynb --feat_reduction only ISI

    • Best contributing features: ISI
    • Accuracy for train for Only ISI: 0.9130434782608695
    • Accuracy for test only ISI: 0.8666666666666667

    python3 Logistic Regression.ipynb --feat_reduction --plot_title

    • Three least contributing features: Temperature -> Ws -> RH
    • Drop (1,2,3) features
    • Accuracy for train 1drop : 0.923913043478260
    • Accuracy for test 1drop: 0.9
    • Accuracy for train 2drop : 0.9239130434782609
    • Accuracy for test 2drop: 0.8833333333333333
    • Accuracy for train 3drop : 0.9293478260869565
    • Accuracy for test 3drop: 0.8666666666666667

About

This dataset contains weather data from 2 regions in Algeria over the period of 3 months and the goal is to predict if a fire occurred at any day within that period. To create a real-world scenario, we want to predict if there will be a fire in a future date as provided by the dataset. The fire prediction is based on weather data collected from …

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published