forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 449
/
Copy pathtime.rs
151 lines (134 loc) · 5.68 KB
/
time.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
// SPDX-License-Identifier: GPL-2.0
//! Time related primitives.
//!
//! This module contains the kernel APIs related to time and timers that
//! have been ported or wrapped for usage by Rust code in the kernel.
//!
//! C header: [`include/linux/jiffies.h`](srctree/include/linux/jiffies.h).
//! C header: [`include/linux/ktime.h`](srctree/include/linux/ktime.h).
pub mod hrtimer;
/// The number of nanoseconds per millisecond.
pub const NSEC_PER_MSEC: i64 = bindings::NSEC_PER_MSEC as i64;
/// The time unit of Linux kernel. One jiffy equals (1/HZ) second.
pub type Jiffies = crate::ffi::c_ulong;
/// The millisecond time unit.
pub type Msecs = crate::ffi::c_uint;
/// Converts milliseconds to jiffies.
#[inline]
pub fn msecs_to_jiffies(msecs: Msecs) -> Jiffies {
// SAFETY: The `__msecs_to_jiffies` function is always safe to call no
// matter what the argument is.
unsafe { bindings::__msecs_to_jiffies(msecs) }
}
/// A Rust wrapper around a `ktime_t`.
#[repr(transparent)]
#[derive(Copy, Clone)]
pub struct Ktime {
inner: bindings::ktime_t,
}
impl Ktime {
/// Create a `Ktime` from a raw `ktime_t`.
#[inline]
pub fn from_raw(inner: bindings::ktime_t) -> Self {
Self { inner }
}
/// Get the current time using `CLOCK_MONOTONIC`.
#[inline]
pub fn ktime_get() -> Self {
// SAFETY: It is always safe to call `ktime_get` outside of NMI context.
Self::from_raw(unsafe { bindings::ktime_get() })
}
/// Divide the number of nanoseconds by a compile-time constant.
#[inline]
fn divns_constant<const DIV: i64>(self) -> i64 {
self.to_ns() / DIV
}
/// Returns the number of nanoseconds.
#[inline]
pub fn to_ns(self) -> i64 {
self.inner
}
/// Returns the number of milliseconds.
#[inline]
pub fn to_ms(self) -> i64 {
self.divns_constant::<NSEC_PER_MSEC>()
}
}
/// Returns the number of milliseconds between two ktimes.
#[inline]
pub fn ktime_ms_delta(later: Ktime, earlier: Ktime) -> i64 {
(later - earlier).to_ms()
}
impl core::ops::Sub for Ktime {
type Output = Ktime;
#[inline]
fn sub(self, other: Ktime) -> Ktime {
Self {
inner: self.inner - other.inner,
}
}
}
/// An identifier for a clock. Used when specifying clock sources.
///
///
/// Selection of the clock depends on the use case. In some cases the usage of a
/// particular clock is mandatory, e.g. in network protocols, filesystems.In other
/// cases the user of the clock has to decide which clock is best suited for the
/// purpose. In most scenarios clock [`ClockId::Monotonic`] is the best choice as it
/// provides a accurate monotonic notion of time (leap second smearing ignored).
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
#[repr(u32)]
pub enum ClockId {
/// A settable system-wide clock that measures real (i.e., wall-clock) time.
///
/// Setting this clock requires appropriate privileges. This clock is
/// affected by discontinuous jumps in the system time (e.g., if the system
/// administrator manually changes the clock), and by frequency adjustments
/// performed by NTP and similar applications via adjtime(3), adjtimex(2),
/// clock_adjtime(2), and ntp_adjtime(3). This clock normally counts the
/// number of seconds since 1970-01-01 00:00:00 Coordinated Universal Time
/// (UTC) except that it ignores leap seconds; near a leap second it may be
/// adjusted by leap second smearing to stay roughly in sync with UTC. Leap
/// second smearing applies frequency adjustments to the clock to speed up
/// or slow down the clock to account for the leap second without
/// discontinuities in the clock. If leap second smearing is not applied,
/// the clock will experience discontinuity around leap second adjustment.
RealTime = bindings::CLOCK_REALTIME,
/// A monotonically increasing clock.
///
/// A nonsettable system-wide clock that represents monotonic time since—as
/// described by POSIX—"some unspecified point in the past". On Linux, that
/// point corresponds to the number of seconds that the system has been
/// running since it was booted.
///
/// The CLOCK_MONOTONIC clock is not affected by discontinuous jumps in the
/// CLOCK_REAL (e.g., if the system administrator manually changes the
/// clock), but is affected by frequency adjustments. This clock does not
/// count time that the system is suspended.
Monotonic = bindings::CLOCK_MONOTONIC,
/// A monotonic that ticks while system is suspended.
///
/// A nonsettable system-wide clock that is identical to CLOCK_MONOTONIC,
/// except that it also includes any time that the system is suspended. This
/// allows applications to get a suspend-aware monotonic clock without
/// having to deal with the complications of CLOCK_REALTIME, which may have
/// discontinuities if the time is changed using settimeofday(2) or similar.
BootTime = bindings::CLOCK_BOOTTIME,
/// International Atomic Time.
///
/// A system-wide clock derived from wall-clock time but counting leap seconds.
///
/// This clock is coupled to CLOCK_REALTIME and will be set when CLOCK_REALTIME is
/// set, or when the offset to CLOCK_REALTIME is changed via adjtimex(2). This
/// usually happens during boot and **should** not happen during normal operations.
/// However, if NTP or another application adjusts CLOCK_REALTIME by leap second
/// smearing, this clock will not be precise during leap second smearing.
///
/// The acronym TAI refers to International Atomic Time.
TAI = bindings::CLOCK_TAI,
}
impl ClockId {
fn into_c(self) -> bindings::clockid_t {
self as bindings::clockid_t
}
}