title | description | services | documentationcenter | author | manager | keywords | ms.service | ms.devlang | ms.topic | ms.date | ms.author |
---|---|---|---|---|---|---|---|---|---|---|---|
Java developer reference for Azure Functions | Microsoft Docs |
Understand how to develop functions with Java. |
functions |
na |
rloutlaw |
justhe |
azure functions, functions, event processing, webhooks, dynamic compute, serverless architecture, java |
azure-functions |
java |
conceptual |
09/14/2018 |
routlaw |
[!INCLUDE functions-java-preview-note]
The concepts of triggers and bindings are fundamental to Azure Functions. Triggers start the execution of your code. Bindings give you a way to pass data to and return data from a function, without having to write custom data access code.
A function should be a stateless method to process input and produce output. Your function should not depend on any instance fields of the class. All the function methods should be public
and method with annotation @FunctionName must be unique as method name defines the entry for a function.
Here is the folder structure of an Azure Function Java project:
FunctionsProject
| - src
| | - main
| | | - java
| | | | - FunctionApp
| | | | | - MyFirstFunction.java
| | | | | - MySecondFunction.java
| - target
| | - azure-functions
| | | - FunctionApp
| | | | - FunctionApp.jar
| | | | - host.json
| | | | - MyFirstFunction
| | | | | - function.json
| | | | - MySecondFunction
| | | | | - function.json
| | | | - bin
| | | | - lib
| - pom.xml
There's a shared host.json file that can be used to configure the function app. Each function has its own code file (.java) and binding configuration file (function.json).
You can put more than one function in a project. Avoid putting your functions into separate jars. The FunctionApp in the target directory is what gets deployed to your function app in Azure.
Azure functions are invoked by a trigger, such as an HTTP request, a timer, or an update to data. Your function needs to process that trigger and any other inputs to produce one or more outputs.
Use the Java annotations included in the com.microsoft.azure.functions.annotation.* package to bind input and outputs to your methods. For more information see Java reference docs.
Important
You must configure an Azure Storage account in your local.settings.json to run Azure Storage Blob, Queue, or Table triggers locally.
Example:
public class Function {
public String echo(@HttpTrigger(name = "req",
methods = {"post"}, authLevel = AuthorizationLevel.ANONYMOUS)
String req, ExecutionContext context) {
return String.format(req);
}
}
here is the generated corresponding function.json
by the azure-functions-maven-plugin:
{
"scriptFile": "azure-functions-example.jar",
"entryPoint": "com.example.Function.echo",
"bindings": [
{
"type": "httpTrigger",
"name": "req",
"direction": "in",
"authLevel": "anonymous",
"methods": [ "post" ]
},
{
"type": "http",
"name": "$return",
"direction": "out"
}
]
}
Download and use the Azul Zulu for Azure JDKs from Azul Systems for local development of Java function apps. JDKs are available for Windows, Linux, and macOS. Azure support is available with a qualified support plan.
Azure Functions supports the use of third-party libraries. By default, all dependencies specified in your project pom.xml
file will be automatically bundled during the mvn package
goal. For libraries not specified as dependencies in the pom.xml
file, place them in a lib
directory in the function's root directory. Dependencies placed in the lib
directory will be added to the system class loader at runtime.
The com.microsoft.azure.functions:azure-functions-java-library
dependency is provided on the classpath by default, and does not need to be included in the lib
directory. Also, dependencies listed here are added to the classpath by azure-functions-java-worker.
You can use Plain old Java objects (POJOs), types defined in azure-functions-java-library
or primitive dataTypes such as String, Integer to bind to input/output bindings.
For converting input data to POJO, azure-functions-java-worker uses gson library. POJO types used as inputs to functions should be public
.
Bind binary inputs or outputs to byte[]
by setting the dataType
field in your function.json to binary
:
@FunctionName("BlobTrigger")
@StorageAccount("AzureWebJobsStorage")
public void blobTrigger(
@BlobTrigger(name = "content", path = "myblob/{fileName}", dataType = "binary") byte[] content,
@BindingName("fileName") String fileName,
final ExecutionContext context
) {
context.getLogger().info("Java Blob trigger function processed a blob.\n Name: " + fileName + "\n Size: " + content.length + " Bytes");
}
Use Optional<T>
for if null values are expected
Input and output bindings provide a declarative way to connect to data from within your code. A function can have multiple input and output bindings.
package com.example;
import com.microsoft.azure.functions.annotation.*;
public class Function {
@FunctionName("echo")
public static String echo(
@HttpTrigger(name = "req", methods = { "put" }, authLevel = AuthorizationLevel.ANONYMOUS, route = "items/{id}") String inputReq,
@TableInput(name = "item", tableName = "items", partitionKey = "Example", rowKey = "{id}", connection = "AzureWebJobsStorage") TestInputData inputData
@TableOutput(name = "myOutputTable", tableName = "Person", connection = "AzureWebJobsStorage") OutputBinding<Person> testOutputData,
) {
testOutputData.setValue(new Person(httpbody + "Partition", httpbody + "Row", httpbody + "Name"));
return "Hello, " + inputReq + " and " + inputData.getKey() + ".";
}
public static class TestInputData {
public String getKey() { return this.RowKey; }
private String RowKey;
}
public static class Person {
public String PartitionKey;
public String RowKey;
public String Name;
public Person(String p, String r, String n) {
this.PartitionKey = p;
this.RowKey = r;
this.Name = n;
}
}
}
This function is invoked with an HTTP request.
- HTTP request payload is passed as a
String
for the argumentinputReq
- One entry is retrieved from the Azure Table Storage and is passed as
TestInputData
to the argumentinputData
.
To receive a batch of inputs, you can bind to String[]
, POJO[]
, List<String>
or List<POJO>
.
@FunctionName("ProcessIotMessages")
public void processIotMessages(
@EventHubTrigger(name = "message", eventHubName = "%AzureWebJobsEventHubPath%", connection = "AzureWebJobsEventHubSender", cardinality = Cardinality.MANY) List<TestEventData> messages,
final ExecutionContext context)
{
context.getLogger().info("Java Event Hub trigger received messages. Batch size: " + messages.size());
}
public class TestEventData {
public String id;
}
This function gets triggered whenever there is new data in the configured event hub. As the cardinality
is set to MANY
, function receives a batch of messages from event hub. EventData from event hub gets converted to TestEventData
for the function execution.
You can bind an output binding to the return value using $return
package com.example;
import com.microsoft.azure.functions.annotation.*;
public class Function {
@FunctionName("copy")
@StorageAccount("AzureWebJobsStorage")
@BlobOutput(name = "$return", path = "samples-output-java/{name}")
public static String copy(@BlobTrigger(name = "blob", path = "samples-input-java/{name}") String content) {
return content;
}
}
If there are multiple output bindings, use the return value for only one of them.
To send multiple output values, use OutputBinding<T>
defined in the azure-functions-java-library
package.
@FunctionName("QueueOutputPOJOList")
public HttpResponseMessage QueueOutputPOJOList(@HttpTrigger(name = "req", methods = { HttpMethod.GET,
HttpMethod.POST }, authLevel = AuthorizationLevel.ANONYMOUS) HttpRequestMessage<Optional<String>> request,
@QueueOutput(name = "itemsOut", queueName = "test-output-java-pojo", connection = "AzureWebJobsStorage") OutputBinding<List<TestData>> itemsOut,
final ExecutionContext context) {
context.getLogger().info("Java HTTP trigger processed a request.");
String query = request.getQueryParameters().get("queueMessageId");
String queueMessageId = request.getBody().orElse(query);
itemsOut.setValue(new ArrayList<TestData>());
if (queueMessageId != null) {
TestData testData1 = new TestData();
testData1.id = "msg1"+queueMessageId;
TestData testData2 = new TestData();
testData2.id = "msg2"+queueMessageId;
itemsOut.getValue().add(testData1);
itemsOut.getValue().add(testData2);
return request.createResponseBuilder(HttpStatus.OK).body("Hello, " + queueMessageId).build();
} else {
return request.createResponseBuilder(HttpStatus.INTERNAL_SERVER_ERROR)
.body("Did not find expected items in CosmosDB input list").build();
}
}
public static class TestData {
public String id;
}
Above function is invoked on an HttpRequest and writes multiple values to the Azure Queue
HttpRequestMessage and HttpResponseMessage types are defined in azure-functions-java-library
are helper types to work with HttpTrigger functions
Specialized Type | Target | Typical Usage |
---|---|---|
HttpRequestMessage<T> |
HTTP Trigger | Get method, headers, or queries |
HttpResponseMessage |
HTTP Output Binding | Return status other than 200 |
Few triggers send trigger metadata along with input data. You can use annotation @BindingName
to bind to trigger metadata
package com.example;
import java.util.Optional;
import com.microsoft.azure.functions.annotation.*;
public class Function {
@FunctionName("metadata")
public static String metadata(
@HttpTrigger(name = "req", methods = { "get", "post" }, authLevel = AuthorizationLevel.ANONYMOUS) Optional<String> body,
@BindingName("name") String queryValue
) {
return body.orElse(queryValue);
}
}
In the example above, the queryValue
is bound to query string parameter name
in the Http request URL http://{example.host}/api/metadata?name=test
. Following is another example to binding to Id
from queue trigger metadata
@FunctionName("QueueTriggerMetadata")
public void QueueTriggerMetadata(
@QueueTrigger(name = "message", queueName = "test-input-java-metadata", connection = "AzureWebJobsStorage") String message,@BindingName("Id") String metadataId,
@QueueOutput(name = "output", queueName = "test-output-java-metadata", connection = "AzureWebJobsStorage") OutputBinding<TestData> output,
final ExecutionContext context
) {
context.getLogger().info("Java Queue trigger function processed a message: " + message + " whith metadaId:" + metadataId );
TestData testData = new TestData();
testData.id = metadataId;
output.setValue(testData);
}
Note
Name provided in the annotation needs to match the metadata property
ExecutionContext
defined in the azure-functions-java-library
contains helper methods to communicate with the functions runtime.
Use getLogger
defined in ExecutionContext
to write logs from function code.
Example:
import com.microsoft.azure.functions.*;
import com.microsoft.azure.functions.annotation.*;
public class Function {
public String echo(@HttpTrigger(name = "req", methods = {"post"}, authLevel = AuthorizationLevel.ANONYMOUS) String req, ExecutionContext context) {
if (req.isEmpty()) {
context.getLogger().warning("Empty request body received by function " + context.getFunctionName() + " with invocation " + context.getInvocationId());
}
return String.format(req);
}
}
You can use the Azure CLI to stream Java stdout and stderr logging as well as other application logging.
Configure your Function application to write application logging using the Azure CLI:
az webapp log config --name functionname --resource-group myResourceGroup --application-logging true
To stream logging output for your Function app using the Azure CLI, open a new command prompt, Bash, or Terminal session and enter the following command:
az webapp log tail --name webappname --resource-group myResourceGroup
The az webapp log tail command has options to filter output using the --provider
option.
To download the log files as a single ZIP file using the Azure CLI, open a new command prompt, Bash, or Terminal session and enter the following command:
az webapp log download --resource-group resourcegroupname --name functionappname
You must have enabled file system logging in the Azure Portal or Azure CLI before running this command.
In Functions, app settings, such as service connection strings, are exposed as environment variables during execution. You can access these settings using, System.getenv("AzureWebJobsStorage")
Example:
Add AppSetting with name testAppSetting and value testAppSettingValue
public class Function {
public String echo(@HttpTrigger(name = "req", methods = {"post"}, authLevel = AuthorizationLevel.ANONYMOUS) String req, ExecutionContext context) {
context.getLogger().info("testAppSetting "+ System.getenv("testAppSettingValue"));
return String.format(req);
}
}
For more information about Azure Function Java development, see the following resources:
- Best practices for Azure Functions
- Azure Functions developer reference
- Azure Functions triggers and bindings
- Local development and debug with Visual Studio Code, IntelliJ, and Eclipse.
- Remote Debug Java Azure Functions with Visual Studio Code
- Maven plugin for Azure Functions - Streamline function creation through the
azure-functions:add
goal and prepare a staging directory for ZIP file deployment.