forked from weitinglin/Bioconductor-Coursera
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweek 4
254 lines (213 loc) · 7.36 KB
/
week 4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
##Quiz 4 Bioconductor for Genomic Data
#20141031
#Q1:The yeastRNASeq experiment data package contains FASTQ files from an RNA seq experiment in yeast. When the package is installed, you can access one of the FASTQ files by the path given by
#library(yeastRNASeq)
#fastqFilePath <-system.file("reads","wt_1_f.fastq.gz",package="yeastRNASeq")
#Question: What fraction of reads in this file has an A nucleotide in the 5th base of the read?
source("https://www.bioconductor.org/biocLite.R")
biocLite("yeastRNASeq") #306mb
library(ShortRead)
library(yeastRNASeq)
library(Biostrings)
fastqFilePath<-system.file("reads","wt_1_f.fastq.gz",package="yeastRNASeq")
reads<-readFastq(fastqFilePath)
DNAStringSet<-sread(reads)
sread(reads)[1]
class(reads)
consensusMatrix(DNAStringSet,baseOnly=TRUE) # 這可以算出reads每個位置在所有reads中ATCG的數量
consensusMatrix(DNAStringSet,as.prob=TRUE,baseOnly=TRUE)
consensusMatrix(DNAStringSet,as.prob=TRUE,baseOnly=TRUE)
#Answer= 0.3638
Question 2: What is the average numeric quality value of these reads?
quality(reads)
mean(as(quality(reads),"matrix")[,5])
#Answer=28.93376
#Question 3: In this interval, how many reads are dupicated by position?
library(Rsamtools)
source("https://www.bioconductor.org/biocLite.R")
biocLite("leeBamViews")
bamFilePath<-system.file("bam","isowt5_13e.bam",package="leeBamViews") # pointer the file
bamFile<-BamFile(bamFilePath)
bamFile
seqinfo(bamFile)
seqlevels(bamFile)
aln<-scanBam(bamFile)
length(aln)
class(aln)
aln<-aln[[1]]
names(aln)
aln$qname
lapply(aln,function(xx)xx[2])
yieldSize(bamFile)<-1
open(bamFile)
scanBam(bamFile)[[1]]$seq
close(bamFile)
yieldSize(bamFile)<-NA
open(bamFile)
gr<-GRanges(seqnames="Scchr13",ranges=IRanges(start=c(800000),end=c(801000)))
params<-ScanBamParam(which=gr,what=scanBamWhat())
aln<-scanBam(bamFile,param=params)
names(aln)
class(aln)
pileup_bamFile<-pileup(bamFile)
class(pileup_bamFile)
names(pileup_bamFile)
pileup_bamFile$pos
plot(x=pileup_bamFile$pos,y=pileup_bamFile$count)
table(aln$pos)
class(aln[[1]])
class(aln)
sum(table(aln[[1]]$pos)<2)
sum(table(aln[[1]]$pos))-sum(table(aln[[1]]$pos)<2)
#Answer=129
#Question 4:What is the average number of reads across the 8 samples falling in this interval?
#the package contains 8 BAM files in total, representing 8different samples from 4 groups
bpaths<-list.files(system.file("bam",package="leeBamViews"),pattern="bam$",full=TRUE)
bamView<-BamViews(bpaths)
gr_1<-GRanges(seqnames="Scchr13",ranges=IRanges(start=c(807762),end=c(808068)))
params<-ScanBamParam(which=gr,what=scanBamWhat()) #不確定要不要這行
bamRanges(bamView)<-gr_1
aln_group<-scanBam(bamView)
class(aln_group)
aln_group
names(aln_group)
lapply(aln_group,function(x)x[[1]]$pos)
aln_group_seq<-lapply(aln_group,function(x)x[[1]]$seq)
length(lapply(aln_group_seq,function(x)x[1])) #fail
class(aln_group_seq)
aln_group_seq
length(aln_group_seq[2])
(31+31+116+116+108+94+102+124)/8
#Answer:90.23
#Question 5 : What is the average expression across samples in the control group for the "8149273" probeset (this is a character identifier, not a row number)
library(oligo)
library(GEOquery)
library(simpleaffy)
library(annotate)
#annotation:pd.hugene.1.0.st.v1
source("https://bioconductor.org/biocLite.R")
biocLite("pd.hugene.1.0.st.v1")
library(pd.hugene.1.0.st.v1)
pd.hugene.1.0.st.v1
#download the data
getGEOSuppFiles("GSE38792")
list.files("GSE38792")
untar("GSE38792/GSE38792_RAW.tar",exdir="GSE38792/CEL")
list.files("GSE38792/CEL")
#read the data with oligo
celfiles<-list.files("GSE38792/CEL",full=TRUE)
rawData<-read.celfiles(celfiles)
rawData
getClass("GeneFeatureSet")
#process the data name
filename<-sampleNames(rawData)
pData(rawData)$filename<-filename
sampleNames<-sub(".*_","",filename)
sampleNames<-sub(".CEL.gz$","",sampleNames)
sampleNames(rawData)<-sampleNames
pData(rawData)$group<-ifelse(grepl("^OSA",sampleNames(rawData)),"OSA","Control") #超棒寫法
pData(rawData)
class(rawData)
#normalized
normData=rma(rawData)
normData
normData_exprs<-exprs(normData)
head(normData_exprs)
-------------------------------------------------------------------fail try
(蠻奇怪的,normalized 後,所有的probeset都有名字了,不太知道為何會這樣,以下都是各種嘗試想要找回probename的方法。)
expression_rawdata<-exprs(rawData)
control_expression<-expression_rawdata[,1:8]
rawData_control <-rawData[,1:8]
rawData_control_exprs<-exprs(rawData_control )
head(rawData_control_exprs)
head(rowname(control_expression))
?getProbeInfo
probe_info_raw<-getProbeInfo(rawData)
probe_info_control<-getProbeInfo(rawData_control)
class(probe_info_control)
dim(probe_info_control)
dim(rawData_control_exprs)
dim(probe_info_raw)
head(rawData_control_exprs)
sampleNames(rawData)
probesetNames(rawData)
rownames(rawData)<-probesetNames(rawData)
---------------------------------------------------------------------fail try
head(normData_exprs)
class(normData_exprs)
normDataexprs_control<-normData_exprs[,1:8]
head(normDataexprs_control)
#find the “8149273” probeset
match("8149273",rownames(normDataexprs_control))
#29678
match("7892501",rownames(normDataexprs_control)) # Test the function
mean(normDataexprs_control[29678,])
#Answer= 7.02183
#Question 6 :What is the absolute value of the log foldchange(logFC) of the gene with the lowest P.value?
library(limma)
class(normDataexprs_control)
class(normData)
phenoData(normData)
pData(normData)
normData$group
normData$group<-factor(normData$group)
design<-model.matrix(~normData$group)
fit<-lmFit(normData,design)
fit<-eBayes(fit)
topTable(fit)
table(fit)
fit
min(fit$p.value)
max(fit$p.value)
expression_differential_pvalue<-fit$p.value
match(min(fit$p.value),fit$p.value)
match(min(fit$p.value),fit$p.value)
fit_topTable<-topTable(fit,number=33300)
fit_topTable
#Anser=0.7126
Question 7:How many genes are differentially expressed between the two groups at an adj.P.value cutoff of 0.05
head(fit_topTable)
class(fit_topTable)
cut_off<-subset(fit_topTable,adj.P.Val<0.05)
cut_off
#Answer=0
Question 8:What is the mean difference in beta values between the 3 normal samples and the 3 cancer samples,across OpenSea CpG?
source("https://bioconductor.org/biocLite.R")
biocLite("minfin")
library(minfiData)
library(minfin)
RGsetEx
RGsetEX_normalized<-preprocessFunnorm(RGsetEx)
RGsetEX_normalized
granges(RGsetEX_normalized)
Beta_value<-getBeta(RGsetEX_normalized)
class(Beta_value)
head(Beta_value)
pData(RGsetEx)
normal<-Beta_value[,c(1,2,5)]
cancer<-Beta_value[,c(3,4,6)]
RGsetEX_nor_openSea<-RGsetEX_normalized[c(getIslandStatus(RGsetEX_normalized)=="OpenSea"),]
Beta_Value_openSea<-getBeta(RGsetEX_nor_openSea)
normal_openSea<-Beta_Value_openSea[,c(1,2,5)]
cancer_openSea<-Beta_Value_openSea[,c(3,4,6)]
mean(normal_openSea)-mean(cancer_openSea)
#Answer=0.08462511
Question 9: How many of these DNase hypersensitive sites contain one or more CpG on the 450k array?
library(AnnotationHub)
ah<-AnnotationHub()
ah<-subset(ah,species=="Homo sapiens")
ah_Caco2<-query(ah,c("Caco2","Awg","Dna"))
ah_Caco2<-ah_Caco2[["AH22442"]]
ah_Caco2
CpG_450K<-granges(RGsetEX_normalized)
reduce(CpG_450K)
unique(findOverlaps(ah_Caco2,CpG_450K,type="within"))
unique(findOverlaps(CpG_450K,ah_Caco2,type="within"))
#67365(x)/90561(x)/76722/29265/40151
source("https://bioconductor.org/biocLite.R")
biocLite("IlluminaHumanMethylation450kanno.ilmn12.hg19")
library(IlluminaHumanMethylation450kanno.ilmn12.hg19)
CpG<-IlluminaHumanMethylation450kanno.ilmn12.hg19
class(CpG)
Question 10
# 87