-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy patheval_utils.py
145 lines (123 loc) · 6.04 KB
/
eval_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import numpy as np
import shapeworks as sw
from shapeworks.utils import *
def get_distance_meshes(out_dir, DT_dir, prediction_dir, mean_prefix):
# Step 1: Get list of test names
test_names = []
for file in os.listdir(prediction_dir):
test_names.append(get_prefix(file))
# Step 2: Get original meshes from test distance transforms
print("\n\nGetting original meshes from distance transforms...")
DT_files = []
for file in os.listdir(DT_dir):
prefix = get_prefix(file)
if prefix in test_names:
DT_files.append(DT_dir + '/' + file)
orig_mesh_list = sorted(get_mesh_from_DT(DT_files, out_dir + "OriginalMeshes/"))
# Step 3: Get predicted meshes from predicted particles
print("\n\nGetting meshes from predicted particles...")
particle_files = []
for file in os.listdir(prediction_dir):
particle_files.append(prediction_dir + file)
template_mesh = mean_prefix + "_dense.vtk"
template_points = mean_prefix + "_sparse.particles"
pred_mesh_list = sorted(
get_mesh_from_particles(particle_files, out_dir + "PredictedMeshes/", template_points, template_mesh))
# Step 4: Get distance between original and predicted mesh
print("\n\nGetting distance between original and predicted meshes...")
orig_dist_mesh_list, pred_dist_mesh_list, avg_distance = surface_to_surface_distance(orig_mesh_list, pred_mesh_list,
out_dir)
print("Done.\n")
return avg_distance
def get_prefix(path):
file_name = os.path.basename(path)
file_name = file_name.replace("predicted_ft_", "")
prefix = "_".join(file_name.split("_")[0:2])
prefix = prefix.split(".")[0]
return prefix
def get_mesh_from_particles(particle_list, mesh_dir, template_particles, template_mesh, planes=None):
if not os.path.exists(mesh_dir):
os.makedirs(mesh_dir)
# Create mesh from file (mesh or segmentation)
sw_mesh = get_mesh_from_file(template_mesh)
sw_particles = np.loadtxt(template_particles)
initialize_mesh_warper(sw_mesh, sw_particles)
particle_dir = os.path.dirname(particle_list[0]) + '/'
out_mesh_filenames = []
for i in range(len(particle_list)):
out_filename = particle_list[i].replace('.particles', '.vtk')
out_filename = out_filename.replace(particle_dir, mesh_dir)
out_mesh_filenames.append(out_filename)
sw_particles = np.loadtxt(particle_list[i])
out_mesh = reconstruct_mesh(sw_particles)
out_mesh.write(out_filename)
if planes is not None:
for index in range(len(out_mesh_filenames)):
sw.Mesh(out_mesh_filenames[index]).clip(planes[index][0], planes[index][1], planes[index][2]).write(
out_mesh_filenames[index])
return out_mesh_filenames
def surface_to_surface_distance(orig_list, pred_list, out_dir):
orig_out_dir = out_dir + "OriginalMeshesWithDistance/"
if not os.path.exists(orig_out_dir):
os.makedirs(orig_out_dir)
pred_out_dir = out_dir + "PredictedMeshesWithDistance/"
if not os.path.exists(pred_out_dir):
os.makedirs(pred_out_dir)
orig_out_list = []
pred_out_list = []
mean_distances = []
for index in range(len(orig_list)):
orig = orig_list[index]
pred = pred_list[index]
name = os.path.basename(orig).replace("original_", "")
orig_out = orig_out_dir + name
pred_out = pred_out_dir + name
orig_out_list.append(orig_out)
pred_out_list.append(pred_out)
orig_mesh = sw.Mesh(orig)
pred_mesh = sw.Mesh(pred)
dist1 = sw.mean(orig_mesh.distance(pred_mesh).write(orig_out).getField("distance", Mesh.Point))
dist2 = sw.mean(pred_mesh.distance(orig_mesh).write(pred_out).getField("distance", Mesh.Point))
mean_distances.append(dist1)
mean_distances.append(dist2)
return orig_out_list, pred_out_list, np.mean(np.array(mean_distances))
def get_MSE(pred_particle_files, true_particle_files):
MSEs = []
for i in range(len(pred_particle_files)):
pred_particles = np.loadtxt(pred_particle_files[i])
true_particles = np.loadtxt(true_particle_files[i])
MSEs.append(np.mean((pred_particles - true_particles) ** 2))
MSEs = np.array(MSEs)
return np.mean(MSEs), np.std(MSEs)
def get_mesh_distances(pred_particle_files, mesh_list, template_particles, template_mesh, out_dir, planes=None):
# Step 1: Get predicted meshes from predicted particles
pred_mesh_list = get_mesh_from_particles(pred_particle_files, out_dir + "/local_predictions/",
template_particles, template_mesh, planes)
# print(f"pred_mesh_list: {pred_mesh_list}")
# Step 2: Get distance between original and predicted mesh
mean_distances = []
for index in range(len(mesh_list)):
if mesh_list[index] == "":
mean_distances.append(-1)
continue
print(f"Computing distance between {mesh_list[index]} and {pred_mesh_list[index]}")
orig_mesh = get_mesh_from_file(mesh_list[index], iso_value=0.5)
if planes is not None:
orig_mesh.clip(planes[index][0], planes[index][1], planes[index][2])
pred_mesh = sw.Mesh(pred_mesh_list[index])
d1 = orig_mesh.distance(pred_mesh)[0]
d2 = pred_mesh.distance(orig_mesh)[0]
# store the distance field in the mesh
pred_mesh.setField("deepssm_error", d2, sw.Mesh.Point)
pred_mesh.write(pred_mesh_list[index])
# store the average of the two into mean_distances
mean_d1 = np.mean(d1)
mean_d2 = np.mean(d2)
print(f"mean_d1: {mean_d1}, mean_d2: {mean_d2}")
total_mean = (mean_d1 + mean_d2) / 2
mean_distances.append(total_mean)
return np.array(mean_distances)
def get_mesh_distance(pred_particle_files, mesh_list, template_particles, template_mesh, out_dir, planes=None):
distances = get_mesh_distances(pred_particle_files, mesh_list, template_particles, template_mesh, out_dir, planes)
return np.mean(distances)