-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathtrainer.py
786 lines (729 loc) · 32.5 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
import os
import time
import json
import numpy as np
from numpy import matlib
import matplotlib.pyplot as plt
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import StepLR
from DeepSSMUtils import model
from DeepSSMUtils import losses
from DeepSSMUtils import train_viz
from DeepSSMUtils import loaders
import DeepSSMUtils
from shapeworks.utils import *
'''
Train helper
Initializes all weights using initialization function specified by initf
'''
def weight_init(module, initf):
def foo(m):
classname = m.__class__.__name__.lower()
if isinstance(m, module):
initf(m.weight)
return foo
'''
Train helper
prints and logs values during training
'''
def log_print(logger, values):
# for each value, if it is a string, print it, otherwise print it with 5 decimal places
for i in range(len(values)):
if isinstance(values[i], str):
print(values[i], end=' ')
else:
print('%.5f' % values[i], end=' ')
# csv format
string_values = [str(i) for i in values]
log_string = ','.join(string_values)
logger.write(log_string + '\n')
def set_scheduler(opt, sched_params):
if sched_params["type"] == "Step":
step_size = sched_params['parameters']['step_size']
gamma = sched_params['parameters']['gamma']
scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=step_size, gamma=gamma)
elif sched_params["type"] == "CosineAnnealing":
T_max = sched_params["parameters"]["T_max"]
eta_min = sched_params["parameters"]["eta_min"]
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(opt, T_max=T_max, eta_min=eta_min)
else:
print("Error: Learning rate scheduler not recognized or implemented.")
return scheduler
def train(project, config_file):
sw.utils.initialize_project_mesh_warper(project)
with open(config_file) as json_file:
parameters = json.load(json_file)
if parameters["tl_net"]["enabled"]:
supervised_train_tl(config_file)
else:
if parameters["loss"]["supervised_latent"]:
supervised_train(config_file)
'''
Network training method
defines, initializes, and trains the models
logs training and validation errors
saves the model and returns the path it is saved to
'''
def supervised_train(config_file):
with open(config_file) as json_file:
parameters = json.load(json_file)
model_dir = parameters['paths']['out_dir'] + parameters['model_name'] + '/'
loaders.make_dir(model_dir)
loader_dir = parameters['paths']['loader_dir']
aug_dir = parameters['paths']['aug_dir']
num_epochs = parameters['trainer']['epochs']
learning_rate = parameters['trainer']['learning_rate']
eval_freq = parameters['trainer']['val_freq']
decay_lr = parameters['trainer']['decay_lr']['enabled']
fine_tune = parameters['fine_tune']['enabled']
loss_func = method_to_call = getattr(losses, parameters["loss"]["function"])
# load the loaders
train_loader_path = loader_dir + "train"
validation_loader_path = loader_dir + "validation"
print("Loading data loaders...")
train_loader = torch.load(train_loader_path)
val_loader = torch.load(validation_loader_path)
print("Done.")
# initializations
num_pca = train_loader.dataset.pca_target[0].shape[0]
num_corr = train_loader.dataset.mdl_target[0].shape[0]
print("Defining net...")
net = model.DeepSSMNet(config_file)
device = net.device
net.to(device)
# initialize model weights
net.apply(weight_init(module=nn.Conv3d, initf=nn.init.xavier_normal_))
net.apply(weight_init(module=nn.Linear, initf=nn.init.xavier_normal_))
# these lines are for the fine tuning layer initialization
whiten_mean = np.load(loader_dir + '/mean_PCA.npy')
whiten_std = np.load(loader_dir + '/std_PCA.npy')
orig_mean = np.loadtxt(aug_dir + '/PCA_Particle_Info/mean.particles')
orig_pc = np.zeros([num_pca, num_corr * 3])
for i in range(num_pca):
temp = np.loadtxt(aug_dir + '/PCA_Particle_Info/pcamode' + str(i) + '.particles')
orig_pc[i, :] = temp.flatten()
bias = torch.from_numpy(orig_mean.flatten()).to(device) # load the mean here
weight = torch.from_numpy(orig_pc.T).to(device) # load the PCA vectors here
net.decoder.fc_fine.bias.data.copy_(bias)
net.decoder.fc_fine.weight.data.copy_(weight)
# define optimizer
# for the initial steps set the gradient of the final layer to be zero
for param in net.decoder.fc_fine.parameters():
param.requires_grad = False
train_params = net.parameters()
opt = torch.optim.Adam(train_params, learning_rate)
opt.zero_grad()
if decay_lr:
scheduler = set_scheduler(opt, parameters['trainer']['decay_lr'])
print("Done.")
# train
print("Beginning training on device = " + device + '\n')
# Initialize logger
logger = open(model_dir + "train_log.csv", "w+", buffering=1)
log_print(logger, ["Training_Stage", "Epoch", "LR", "Train_Err", "Train_Rel_Err", "Val_Err", "Val_Rel_Err", "Sec"])
# Initialize training plot
train_plot = plt.figure()
axe = train_plot.add_subplot(111)
axe.set_title('DeepSSM Training')
sp_train, = axe.plot([], [], label='Training', ms=10, color='b', marker='o', ls='')
sp_val, = axe.plot([], [], label='Validation', ms=10, color='r', marker='o', ls='')
axe.set_xlabel('Epochs')
axe.set_xlim(0, num_epochs + 1)
axe.set_ylabel('Particle MSE')
axe.legend()
train_plot.savefig(model_dir + "training_plot.png", dpi=300)
# initialize
epochs = []
plot_train_losses = []
plot_val_losses = []
t0 = time.time()
best_val_rel_error = np.Inf
for e in range(1, num_epochs + 1):
if sw_check_abort():
sw_message("Aborted")
return
sw_message(f"Epoch {e}/{num_epochs}")
sw_progress(e / (num_epochs + 1))
torch.cuda.empty_cache()
# train
net.train()
train_losses = []
train_rel_losses = []
pred_particles = []
true_particles = []
train_names = []
for img, pca, mdl, names in train_loader:
train_names.extend(names)
opt.zero_grad()
img = img.to(device)
pca = pca.to(device)
mdl = mdl.to(device)
[pred_pca, pred_mdl] = net(img)
loss = loss_func(pred_mdl, mdl)
loss.backward()
opt.step()
train_losses.append(loss.item())
train_rel_loss = loss_func(pred_mdl, mdl) / loss_func(pred_mdl * 0, mdl)
train_rel_losses.append(train_rel_loss.item())
pred_particles.extend(pred_mdl.detach().cpu().numpy())
true_particles.extend(mdl.detach().cpu().numpy())
train_viz.write_examples(np.array(pred_particles), np.array(true_particles), train_names,
model_dir + "examples/train_")
# test validation
pred_particles = []
true_particles = []
val_names = []
if ((e % eval_freq) == 0 or e == 1):
net.eval()
val_losses = []
val_rel_losses = []
for img, pca, mdl, names in val_loader:
val_names.extend(names)
opt.zero_grad()
img = img.to(device)
pca = pca.to(device)
mdl = mdl.to(device)
[pred_pca, pred_mdl] = net(img)
v_loss = loss_func(pred_mdl, mdl)
val_losses.append(v_loss.item())
val_rel_loss = loss_func(pred_mdl, mdl) / loss_func(pred_mdl * 0, mdl)
val_rel_losses.append(val_rel_loss.item())
pred_particles.extend(pred_mdl.detach().cpu().numpy())
true_particles.extend(mdl.detach().cpu().numpy())
train_viz.write_examples(np.array(pred_particles), np.array(true_particles), val_names,
model_dir + "examples/validation_")
# log
train_mr_MSE = np.mean(np.sqrt(train_losses))
val_mr_MSE = np.mean(np.sqrt(val_losses))
train_rel_err = np.mean(train_rel_losses)
val_rel_err = np.mean(val_rel_losses)
last_learning_rate = learning_rate
if decay_lr:
last_learning_rate = scheduler.get_last_lr()[0]
log_print(logger,
["Base_Training", e, last_learning_rate, train_mr_MSE, train_rel_err, val_mr_MSE, val_rel_err,
time.time() - t0])
# plot
epochs.append(e)
plot_train_losses.append(train_mr_MSE)
plot_val_losses.append(val_mr_MSE)
sp_train.set_data(epochs, plot_train_losses)
sp_val.set_data(epochs, plot_val_losses)
axe.set_ylim(0, max(max(plot_train_losses), max(plot_val_losses)) + 3)
train_plot.canvas.draw()
train_plot.savefig(model_dir + "training_plot.png")
# save
if val_rel_err < best_val_rel_error:
best_val_rel_error = val_rel_err
best_epoch = e
torch.save(net.state_dict(), os.path.join(model_dir, 'best_model.torch'))
t0 = time.time()
if decay_lr:
scheduler.step()
torch.save(net.state_dict(), os.path.join(model_dir, 'final_model.torch'))
parameters['best_model_epochs'] = best_epoch
with open(config_file, "w") as json_file:
json.dump(parameters, json_file, indent=2)
print("Training complete, model saved. Best model after epoch " + str(best_epoch))
# now commence the fine tuning model if present on best model
if fine_tune:
print("Beginning fine tuning training step on device = ", device)
net = model.DeepSSMNet(config_file)
if parameters["use_best_model"]:
model_path = os.path.join(model_dir, 'best_model.torch')
else:
model_path = os.path.join(model_dir, 'final_model.torch')
net.load_state_dict(torch.load(model_path))
net.to(device)
# logger = open(model_dir + "train_log_ft.csv", "w+")
# log_print(logger, ["Epoch", "Train_Err_mdl", "Train_Rel_Err_mdl", "Val_Err_mdl", "Val_Rel_Err_mdl", "Sec"])
ft_epochs = parameters['fine_tune']['epochs']
learning_rate = parameters['fine_tune']['learning_rate']
eval_freq = parameters['fine_tune']['val_freq']
loss_func = method_to_call = getattr(losses, parameters['fine_tune']["loss"])
# Initialize optimizer
train_params = net.parameters()
opt = torch.optim.Adam(train_params, learning_rate)
opt.zero_grad()
# Initialize fine-tuning training plot
train_plot = plt.figure()
axe = train_plot.add_subplot(111)
sp_train, = axe.plot([], [], label='Fine Tuning', ms=10, color='b', marker='o', ls='')
sp_val, = axe.plot([], [], label='Validation', ms=10, color='r', marker='o', ls='')
axe.set_title('DeepSSM Fine Tuning')
axe.set_xlabel('Epochs')
axe.set_xlim(0, ft_epochs + 1)
axe.set_ylabel('Particle MSE')
axe.legend()
train_plot.savefig(model_dir + "training_plot_ft.png", dpi=300)
epochs = []
plot_train_losses = []
plot_val_losses = []
t0 = time.time()
# free the last params
for param in net.decoder.fc_fine.parameters():
param.requires_grad = True
# train on the corr loss
best_ft_val_rel_error = np.Inf
for e in range(1, ft_epochs + 1):
if sw_check_abort():
sw_message("Aborted")
return
sw_message(f"Fine Tuning, Epoch {e}/{ft_epochs}")
sw_progress(e / (num_epochs + 1))
torch.cuda.empty_cache()
# train
net.train()
train_losses = []
train_rel_losses = []
pred_particles = []
true_particles = []
train_names = []
for img, pca, mdl, names in train_loader:
train_names.extend(names)
opt.zero_grad()
img = img.to(device)
pca = pca.to(device)
mdl = mdl.to(device)
[pred_pca, pred_mdl] = net(img)
loss = loss_func(pred_mdl, mdl)
loss.backward()
opt.step()
train_losses.append(loss.item())
train_rel_loss = loss_func(pred_mdl, mdl) / loss_func(pred_mdl * 0, mdl)
train_rel_losses.append(train_rel_loss.item())
pred_particles.extend(pred_mdl.detach().cpu().numpy())
true_particles.extend(mdl.detach().cpu().numpy())
train_viz.write_examples(np.array(pred_particles), np.array(true_particles), train_names,
model_dir + "examples/train_")
# test validation
pred_particles = []
true_particles = []
val_names = []
if ((e % eval_freq) == 0 or e == 1):
net.eval()
val_losses = []
val_rel_losses = []
for img, pca, mdl, names in val_loader:
val_names.extend(names)
opt.zero_grad()
img = img.to(device)
pca = pca.to(device)
mdl = mdl.to(device)
[pred_pca, pred_mdl] = net(img)
v_loss = loss_func(pred_mdl, mdl)
val_losses.append(v_loss.item())
val_rel_loss = (loss_func(pred_mdl, mdl) / loss_func(pred_mdl * 0, mdl)).item()
val_rel_losses.append(val_rel_loss)
if val_rel_loss < best_ft_val_rel_error:
best_ft_val_rel_error = val_rel_loss
best_ft_epoch = e
torch.save(net.state_dict(), os.path.join(model_dir, 'best_model_ft.torch'))
pred_particles.extend(pred_mdl.detach().cpu().numpy())
true_particles.extend(mdl.detach().cpu().numpy())
train_viz.write_examples(np.array(pred_particles), np.array(true_particles), val_names,
model_dir + "examples/validation_")
# log
train_mr_MSE = np.mean(np.sqrt(train_losses))
val_mr_MSE = np.mean(np.sqrt(val_losses))
train_rel_err = np.mean(train_rel_losses)
val_rel_err = np.mean(val_rel_losses)
log_print(logger,
["Fine_Tuning", e, learning_rate, train_mr_MSE, train_rel_err, val_mr_MSE, val_rel_err,
time.time() - t0])
# plot
epochs.append(e)
plot_train_losses.append(train_mr_MSE)
plot_val_losses.append(val_mr_MSE)
sp_train.set_data(epochs, plot_train_losses)
sp_val.set_data(epochs, plot_val_losses)
axe.set_ylim(0, max(max(plot_train_losses), max(plot_val_losses)) + 3)
train_plot.canvas.draw()
train_plot.savefig(model_dir + "training_plot_ft.png")
t0 = time.time()
logger.close()
torch.save(net.state_dict(), os.path.join(model_dir, 'final_model_ft.torch'))
parameters['best_ft_model_epochs'] = best_ft_epoch
with open(config_file, "w") as json_file:
json.dump(parameters, json_file, indent=2)
print("Fine tuning complete, model saved. Best model after epoch " + str(best_ft_epoch))
'''
Network training method for TL-Net model
defines, initializes, and trains the models
logs training and validation errors
saves the model and returns the path it is saved to
'''
def supervised_train_tl(config_file):
with open(config_file) as json_file:
parameters = json.load(json_file)
model_dir = parameters['paths']['out_dir'] + parameters['model_name'] + '/'
loaders.make_dir(model_dir)
loader_dir = parameters['paths']['loader_dir']
learning_rate = parameters['trainer']['learning_rate']
eval_freq = parameters['trainer']['val_freq']
decay_lr = parameters['trainer']['decay_lr']['enabled']
a_ae = parameters["tl_net"]["a_ae"]
c_ae = parameters["tl_net"]["c_ae"]
a_lat = parameters["tl_net"]["a_lat"]
c_lat = parameters["tl_net"]["c_lat"]
# load the loaders
train_loader_path = loader_dir + "train"
validation_loader_path = loader_dir + "validation"
print("Loading data loaders...")
train_loader = torch.load(train_loader_path)
val_loader = torch.load(validation_loader_path)
print("Done.")
print("Defining model...")
net = model.DeepSSMNet_TLNet(config_file)
device = net.device
net.to(device)
# initialize model weights
net.apply(weight_init(module=nn.Conv3d, initf=nn.init.xavier_normal_))
net.apply(weight_init(module=nn.Linear, initf=nn.init.xavier_normal_))
train_params = net.parameters()
opt = torch.optim.Adam(train_params, learning_rate)
opt.zero_grad()
if decay_lr:
scheduler = set_scheduler(opt, parameters['trainer']['decay_lr'])
print("Done.")
# train
print("Beginning training on device = " + device + '\n')
logger = open(model_dir + "train_log.csv", "w+")
ae_epochs = parameters['tl_net']['ae_epochs']
# Initialize training plot
train_plot = plt.figure()
axe = train_plot.add_subplot(111)
axe.set_title('TL-DeepSSSM(Autoencoder) Training')
sp_train, = axe.plot([], [], label='Training', ms=10, color='b', marker='o', ls='')
sp_val, = axe.plot([], [], label='Validation', ms=10, color='r', marker='o', ls='')
axe.set_xlabel('Epochs')
axe.set_xlim(0, ae_epochs + 1)
axe.set_ylabel('Particle MSE')
axe.legend()
train_plot.savefig(model_dir + "training_plot_ae.png", dpi=300)
# initialize
epochs = []
plot_train_losses = []
plot_val_losses = []
t0 = time.time()
best_val_rel_error = np.Inf
# train the AE first
log_print(logger, ["Training_Stage", "Epoch", "LR", "Train_Err", "Train_Rel_Err", "Val_Err", "Val_Rel_Err", "Sec"])
mean_mdl = torch.mean(train_loader.dataset.mdl_target, 0).to(device)
for e in range(1, ae_epochs + 1):
if sw_check_abort():
sw_message("Aborted")
return
sw_message(f"Autoencoder Epoch {e}/{ae_epochs}")
sw_progress(e / (ae_epochs + 1))
torch.cuda.empty_cache()
# train
net.train()
ae_train_losses = []
ae_train_rel_losses = []
pred_particles = []
true_particles = []
train_names = []
for img, pca, mdl, names in train_loader:
train_names.extend(names)
opt.zero_grad()
img = img.to(device)
pca = pca.to(device)
mdl = mdl.to(device)
[pred_pt, lat, lat_img] = net(mdl, img)
if parameters["loss"]["function"] == "MSE":
loss = losses.MSE(pred_pt, mdl)
train_rel_loss = losses.MSE(pred_pt, mdl) / losses.MSE(pred_pt * 0, mdl)
else:
loss = losses.Focal(pred_pt, mdl, a_ae, c_ae)
train_rel_loss = losses.Focal(pred_pt, mdl, a_ae, c_ae) / losses.Focal(pred_pt * 0, mdl, a_ae, c_ae)
loss.backward()
opt.step()
ae_train_losses.append(loss.item())
ae_train_rel_losses.append(train_rel_loss.item())
pred_particles.extend(pred_pt.detach().cpu().numpy())
true_particles.extend(mdl.detach().cpu().numpy())
train_viz.write_examples(np.array(pred_particles), np.array(true_particles), train_names,
model_dir + "examples/train_")
# test validation
pred_particles = []
true_particles = []
val_names = []
if ((e % eval_freq) == 0 or e == 1):
net.eval()
ae_val_losses = []
ae_val_rel_losses = []
for img, pca, mdl, names in val_loader:
val_names.extend(names)
opt.zero_grad()
img = img.to(device)
pca = pca.to(device)
mdl = mdl.to(device)
[pred_pt, lat, lat_img] = net(mdl, img)
# again in validation we simply compute standard l2 loss
loss_ae = losses.MSE(pred_pt, mdl)
ae_val_rel_loss = losses.MSE(pred_pt, mdl) / losses.MSE(pred_pt * 0, mdl)
ae_val_losses.append(loss_ae.item())
ae_val_rel_losses.append(ae_val_rel_loss.item())
pred_particles.extend(pred_pt.detach().cpu().numpy())
true_particles.extend(mdl.detach().cpu().numpy())
train_viz.write_examples(np.array(pred_particles), np.array(true_particles), val_names,
model_dir + "examples/validation_")
# log
train_ae_err = np.mean(ae_train_losses)
train_rel_ae_err = np.mean(ae_train_rel_losses)
val_ae_err = np.mean(ae_val_losses)
val_rel_ae_err = np.mean(ae_val_rel_losses)
last_learning_rate = learning_rate
if decay_lr:
last_learning_rate = scheduler.get_last_lr()[0]
log_print(logger,
["AE", e, last_learning_rate, train_ae_err, train_rel_ae_err, val_ae_err, val_rel_ae_err,
time.time() - t0])
# plot
epochs.append(e)
plot_train_losses.append(train_ae_err)
plot_val_losses.append(val_ae_err)
sp_train.set_data(epochs, plot_train_losses)
sp_val.set_data(epochs, plot_val_losses)
axe.set_ylim(0, max(max(plot_train_losses), max(plot_val_losses)) + 3)
train_plot.canvas.draw()
train_plot.savefig(model_dir + "training_plot_ae.png")
t0 = time.time()
# save
torch.save(net.state_dict(), os.path.join(model_dir, 'final_model_ae.torch'))
# fix the autoencoder and train the TL-net
for param in net.CorrespondenceDecoder.parameters():
param.requires_grad = False
for param in net.CorrespondenceEncoder.parameters():
param.requires_grad = False
# train the t-flank
tf_epochs = parameters['tl_net']['tf_epochs']
# Initialize training plot
train_plot = plt.figure()
axe = train_plot.add_subplot(111)
axe.set_title('TL-DeepSSM(T-Flank) Training')
sp_train, = axe.plot([], [], label='Training', ms=10, color='b', marker='o', ls='')
sp_val, = axe.plot([], [], label='Validation', ms=10, color='r', marker='o', ls='')
axe.set_xlabel('Epochs')
axe.set_xlim(0, tf_epochs + 1)
axe.set_ylabel('Particle MSE')
axe.legend()
train_plot.savefig(model_dir + "training_plot_tf.png", dpi=300)
# initialize
t0 = time.time()
epochs = []
plot_train_losses = []
plot_val_losses = []
for e in range(1, tf_epochs + 1):
if sw_check_abort():
sw_message("Aborted")
return
sw_message(f"T-Flank Epoch {e}/{tf_epochs}")
sw_progress(e / (tf_epochs + 1))
torch.cuda.empty_cache()
# train
net.train()
tf_train_losses = []
tf_train_rel_losses = []
pred_particles = []
true_particles = []
train_names = []
for img, pca, mdl, names in train_loader:
train_names.extend(names)
opt.zero_grad()
img = img.to(device)
pca = pca.to(device)
mdl = mdl.to(device)
[pred_pt, lat, lat_img] = net(mdl, img)
if parameters["loss"]["function"] == "MSE":
loss = losses.MSE(lat, lat_img)
train_rel_loss = losses.MSE(lat, lat_img) / losses.MSE(lat * 0, lat_img)
else:
loss = losses.Focal(lat, lat_img, a_lat, c_lat)
train_rel_loss = losses.Focal(lat, lat_img, a_lat, c_lat) / losses.Focal(lat * 0, lat_img, a_lat, c_lat)
loss.backward()
opt.step()
tf_train_losses.append(loss.item())
tf_train_rel_losses.append(train_rel_loss.item())
pred_particles.extend(pred_pt.detach().cpu().numpy())
true_particles.extend(mdl.detach().cpu().numpy())
train_viz.write_examples(np.array(pred_particles), np.array(true_particles), train_names,
model_dir + "examples/train_")
# test validation
pred_particles = []
true_particles = []
val_names = []
if ((e % eval_freq) == 0 or e == 1):
net.eval()
tf_val_losses = []
tf_val_rel_losses = []
for img, pca, mdl, names in val_loader:
val_names.extend(names)
opt.zero_grad()
img = img.to(device)
pca = pca.to(device)
mdl = mdl.to(device)
[pred_pt, lat, lat_img] = net(mdl, img)
loss_tf = losses.MSE(lat_img, lat)
tf_val_rel_loss = losses.MSE(lat_img, lat) / losses.MSE(lat_img * 0, lat)
tf_val_losses.append(loss_tf.item())
tf_val_rel_losses.append(tf_val_rel_loss.item())
pred_particles.extend(pred_pt.detach().cpu().numpy())
true_particles.extend(mdl.detach().cpu().numpy())
train_viz.write_examples(np.array(pred_particles), np.array(true_particles), val_names,
model_dir + "examples/validation_")
# log
train_tf_err = np.mean(tf_train_losses)
train_rel_tf_err = np.mean(tf_train_rel_losses)
val_tf_err = np.mean(tf_val_losses)
val_rel_tf_err = np.mean(tf_val_rel_losses)
last_learning_rate = learning_rate
if decay_lr:
last_learning_rate = scheduler.get_last_lr()[0]
log_print(logger,
["T-Flank", e, last_learning_rate, train_tf_err, train_rel_tf_err, val_tf_err, val_rel_tf_err,
time.time() - t0])
# plot
epochs.append(e)
plot_train_losses.append(train_tf_err)
plot_val_losses.append(val_tf_err)
sp_train.set_data(epochs, plot_train_losses)
sp_val.set_data(epochs, plot_val_losses)
axe.set_ylim(0, max(max(plot_train_losses), max(plot_val_losses)) + 3)
train_plot.canvas.draw()
train_plot.savefig(model_dir + "training_plot_tf.png")
t0 = time.time()
# save
torch.save(net.state_dict(), os.path.join(model_dir, 'final_model_tf.torch'))
# jointly train the model
joint_epochs = parameters['tl_net']['joint_epochs']
alpha = parameters['tl_net']['alpha']
for param in net.CorrespondenceDecoder.parameters():
param.requires_grad = True
for param in net.CorrespondenceEncoder.parameters():
param.requires_grad = True
# Initialize training plot
train_plot = plt.figure()
axe = train_plot.add_subplot(111)
axe.set_title('TL-DeepSSM(Joint) Training')
sp_train, = axe.plot([], [], label='Training', ms=10, color='b', marker='o', ls='')
sp_val, = axe.plot([], [], label='Validation', ms=10, color='r', marker='o', ls='')
axe.set_xlabel('Epochs')
axe.set_xlim(0, joint_epochs + 1)
axe.set_ylabel('Particle MSE')
axe.legend()
train_plot.savefig(model_dir + "training_plot_joint.png", dpi=300)
# initialize
epochs = []
plot_train_losses = []
plot_val_losses = []
t0 = time.time()
for e in range(1, joint_epochs + 1):
if sw_check_abort():
sw_message("Aborted")
return
sw_message(f"Joint Epoch {e}/{joint_epochs}")
sw_progress(e / (joint_epochs + 1))
# train
net.train()
ae_train_rel_losses = []
tf_train_rel_losses = []
joint_train_losses = []
pred_particles = []
true_particles = []
train_names = []
for img, pca, mdl, names in train_loader:
train_names.extend(names)
opt.zero_grad()
img = img.to(device)
pca = pca.to(device)
mdl = mdl.to(device)
[pred_pt, lat, lat_img] = net(mdl, img)
if parameters["loss"]["function"] == "MSE":
loss_ae = losses.MSE(pred_pt, mdl)
loss_tf = losses.MSE(lat_img, lat)
ae_train_rel_loss = losses.MSE(pred_pt, mdl) / losses.MSE(pred_pt * 0, mdl)
tf_train_rel_loss = losses.MSE(lat_img, lat) / losses.MSE(lat_img * 0, lat)
else:
loss_ae = losses.Focal(pred_pt, mdl, a_ae, c_ae)
loss_tf = losses.Focal(lat, lat_img, a_lat, c_lat)
ae_train_rel_loss = losses.Focal(pred_pt, mdl, a_ae, c_ae) / losses.Focal(pred_pt * 0, mdl, a_ae, c_ae)
tf_train_rel_loss = losses.Focal(lat, lat_img, a_lat, c_lat) / losses.Focal(lat * 0, lat_img, a_lat,
c_lat)
loss = loss_ae + alpha * loss_tf
loss.backward()
opt.step()
joint_train_losses.append(loss.item())
ae_train_rel_losses.append(ae_train_rel_loss.item())
tf_train_rel_losses.append(tf_train_rel_loss.item())
pred_particles.extend(pred_pt.detach().cpu().numpy())
true_particles.extend(mdl.detach().cpu().numpy())
train_viz.write_examples(np.array(pred_particles), np.array(true_particles), train_names,
model_dir + "examples/train_")
# test validation
pred_particles = []
true_particles = []
val_names = []
if ((e % eval_freq) == 0 or e == 1):
net.eval()
ae_val_rel_losses = []
tf_val_rel_losses = []
joint_val_losses = []
for img, pca, mdl, names in val_loader:
val_names.extend(names)
opt.zero_grad()
img = img.to(device)
pca = pca.to(device)
mdl = mdl.to(device)
[pred_pt, lat, lat_img] = net(mdl, img)
loss_ae = losses.MSE(pred_pt, mdl)
ae_val_rel_loss = losses.MSE(pred_pt, mdl) / losses.MSE(pred_pt * 0, mdl)
loss_tf = losses.MSE(lat_img, lat)
tf_val_rel_loss = losses.MSE(lat, lat_img) / losses.MSE(lat * 0, lat_img)
joint_val_losses.append(loss_ae.item() + alpha * loss_tf.item())
ae_val_rel_losses.append(ae_val_rel_loss.item())
tf_val_rel_losses.append(tf_val_rel_loss.item())
pred_particles.extend(pred_pt.detach().cpu().numpy())
true_particles.extend(mdl.detach().cpu().numpy())
train_viz.write_examples(np.array(pred_particles), np.array(true_particles), val_names,
model_dir + "examples/validation_")
# log
train_rel_ae_err = np.mean(ae_train_rel_losses)
train_rel_tf_err = np.mean(tf_train_rel_losses)
val_rel_ae_err = np.mean(ae_val_rel_losses)
val_rel_tf_err = np.mean(tf_val_rel_losses)
joint_train_losses = np.mean(joint_train_losses)
joint_val_losses = np.mean(joint_val_losses)
last_learning_rate = learning_rate
if decay_lr:
last_learning_rate = scheduler.get_last_lr()[0]
log_print(logger, ["Joint", e, last_learning_rate, train_rel_ae_err, val_rel_ae_err, train_rel_tf_err,
val_rel_tf_err, time.time() - t0])
# plot
epochs.append(e)
plot_train_losses.append(joint_train_losses)
plot_val_losses.append(joint_val_losses)
sp_train.set_data(epochs, plot_train_losses)
sp_val.set_data(epochs, plot_val_losses)
axe.set_ylim(0, max(max(plot_train_losses), max(plot_val_losses)) + 3)
train_plot.canvas.draw()
train_plot.savefig(model_dir + "training_plot_joint.png")
# save
val_rel_err = val_rel_ae_err + alpha * val_rel_tf_err
if val_rel_err < best_val_rel_error:
best_val_rel_error = val_rel_err
best_epoch = e
torch.save(net.state_dict(), os.path.join(model_dir, 'best_model.torch'))
t0 = time.time()
if decay_lr:
scheduler.step()
logger.close()
torch.save(net.state_dict(), os.path.join(model_dir, 'final_model.torch'))
parameters['best_model_epochs'] = best_epoch
with open(config_file, "w") as json_file:
json.dump(parameters, json_file, indent=2)
print("Training complete, model saved. Best model after epoch " + str(best_epoch))