-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathStatsGroupLDAJob.cpp
145 lines (115 loc) · 4.79 KB
/
StatsGroupLDAJob.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#include <pybind11/eigen.h>
#include <pybind11/embed.h>
#include <pybind11/stl.h>
namespace py = pybind11;
using namespace pybind11::literals; // to bring in the `_a` literal
#include <Job/StatsGroupLDAJob.h>
#include <jkqtplotter/graphs/jkqtpscatter.h>
#include <jkqtplotter/jkqtplotter.h>
namespace shapeworks {
//---------------------------------------------------------------------------
StatsGroupLDAJob::StatsGroupLDAJob() {}
//---------------------------------------------------------------------------
void StatsGroupLDAJob::set_stats(ParticleShapeStatistics stats) { stats_ = stats; }
//---------------------------------------------------------------------------
void StatsGroupLDAJob::run() {
Q_EMIT progress(0.1);
stats_.principal_component_projections();
auto pca_loadings = stats_.get_pca_loadings();
Q_EMIT progress(0.2);
auto& group_ids = stats_.GroupID();
int num_samples = pca_loadings.rows();
Eigen::MatrixXd group_1_data;
Eigen::MatrixXd group_2_data;
int group_1_count = std::count(group_ids.begin(), group_ids.end(), 1);
int group_2_count = num_samples - group_1_count;
if (group_1_count == 0 || group_2_count == 0) {
return;
}
group_1_data.resize(group_1_count, pca_loadings.cols());
group_2_data.resize(group_2_count, pca_loadings.cols());
int group_1_idx = 0;
int group_2_idx = 0;
for (int i = 0; i < num_samples; i++) {
if (group_ids[i] == 1) {
group_1_data.row(group_1_idx++) = pca_loadings.row(i);
} else {
group_2_data.row(group_2_idx++) = pca_loadings.row(i);
}
}
py::module sw = py::module::import("shapeworks");
py::object lda_loadings = sw.attr("stats").attr("lda_loadings");
Q_EMIT progress(0.5);
using ResultType =
std::tuple<Eigen::MatrixXd, Eigen::MatrixXd, Eigen::MatrixXd, Eigen::MatrixXd, Eigen::MatrixXd, Eigen::MatrixXd>;
ResultType result = lda_loadings(group_1_data.transpose(), group_2_data.transpose()).cast<ResultType>();
group1_x_ = std::get<0>(result);
group2_x_ = std::get<1>(result);
group1_pdf_ = std::get<2>(result);
group2_pdf_ = std::get<3>(result);
group1_map_ = std::get<4>(result);
group2_map_ = std::get<5>(result);
Q_EMIT progress(1.0);
}
//---------------------------------------------------------------------------
QString StatsGroupLDAJob::name() { return "Group LDA"; }
//---------------------------------------------------------------------------
void StatsGroupLDAJob::plot(JKQTPlotter* plot, QString group_1_name, QString group_2_name) {
JKQTPDatastore* ds = plot->getDatastore();
ds->clear();
plot->clearGraphs();
QString title = "LDA";
auto draw_line_plot = [&](Eigen::MatrixXd x, Eigen::MatrixXd y, QString name, QColor color) {
QVector<double> xv, yv;
for (int i = 0; i < x.size(); i++) {
xv << x(i);
yv << y(i);
}
QString x_label = name + " PDF";
QString y_label = name + " y";
size_t column_x = ds->addCopiedColumn(xv, x_label);
size_t column_y = ds->addCopiedColumn(yv, y_label);
JKQTPXYLineGraph* graph = new JKQTPXYLineGraph(plot);
graph->setColor(color);
graph->setSymbolType(JKQTPNoSymbol);
graph->setXColumn(column_x);
graph->setYColumn(column_y);
graph->setTitle(name + " PDF");
plot->addGraph(graph);
};
draw_line_plot(group1_x_, group1_pdf_, group_1_name, QColor(239, 133, 54));
draw_line_plot(group2_x_, group2_pdf_, group_2_name, Qt::blue);
auto draw_scatter_plot = [&](Eigen::MatrixXd map, QString name, QColor color) {
QVector<double> x, y;
for (int i = 0; i < map.size(); i++) {
x << map(i);
y << 0.01;
}
int column_x = ds->addCopiedColumn(x, name + "scatter x");
int column_y = ds->addCopiedColumn(y, name + "scatter y");
auto scatter = new JKQTPXYParametrizedScatterGraph(plot);
scatter->setColor(color);
scatter->setXColumn(column_x);
scatter->setYColumn(column_y);
scatter->setTitle(name + " Shape Mappings");
plot->addGraph(scatter);
};
draw_scatter_plot(group1_map_, group_1_name, QColor(239, 133, 54));
draw_scatter_plot(group2_map_, group_2_name, Qt::blue);
plot->getPlotter()->setUseAntiAliasingForGraphs(true);
plot->getPlotter()->setUseAntiAliasingForSystem(true);
plot->getPlotter()->setUseAntiAliasingForText(true);
plot->getPlotter()->setPlotLabelFontSize(18);
plot->getPlotter()->setPlotLabel("\\textbf{" + title + "}");
plot->getPlotter()->setDefaultTextSize(14);
plot->getPlotter()->setShowKey(true);
plot->getXAxis()->setAxisLabel("Shape mapping to linear discrimination of variation between population means");
plot->getXAxis()->setLabelFontSize(8);
plot->getYAxis()->setAxisLabel("Probability Density");
plot->getYAxis()->setLabelFontSize(14);
plot->clearAllMouseWheelActions();
plot->setMousePositionShown(false);
plot->setMinimumSize(250, 250);
plot->zoomToFit();
}
} // namespace shapeworks