forked from lijin118/3CATN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalexnet.py
86 lines (76 loc) · 2.87 KB
/
alexnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import torch
import os
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
__all__ = ['AlexNet', 'alexnet']
class LRN(nn.Module):
def __init__(self, local_size=1, alpha=1.0, beta=0.75, ACROSS_CHANNELS=True):
super(LRN, self).__init__()
self.ACROSS_CHANNELS = ACROSS_CHANNELS
if ACROSS_CHANNELS:
self.average=nn.AvgPool3d(kernel_size=(local_size, 1, 1),
stride=1,
padding=(int((local_size-1.0)/2), 0, 0))
else:
self.average=nn.AvgPool2d(kernel_size=local_size,
stride=1,
padding=int((local_size-1.0)/2))
self.alpha = alpha
self.beta = beta
def forward(self, x):
if self.ACROSS_CHANNELS:
div = x.pow(2).unsqueeze(1)
div = self.average(div).squeeze(1)
div = div.mul(self.alpha).add(1.0).pow(self.beta)
else:
div = x.pow(2)
div = self.average(div)
div = div.mul(self.alpha).add(1.0).pow(self.beta)
x = x.div(div)
return x
class AlexNet(nn.Module):
def __init__(self, num_classes=1000):
super(AlexNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 96, kernel_size=11, stride=4, padding=0),
nn.ReLU(inplace=True),
LRN(local_size=5, alpha=0.0001, beta=0.75),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(96, 256, kernel_size=5, padding=2, groups=2),
nn.ReLU(inplace=True),
LRN(local_size=5, alpha=0.0001, beta=0.75),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(256, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 384, kernel_size=3, padding=1, groups=2),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1, groups=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
)
self.classifier = nn.Sequential(
nn.Linear(256 * 6 * 6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, num_classes),
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), 256 * 6 * 6)
x = self.classifier(x)
return x
def alexnet(pretrained=False, **kwargs):
r"""AlexNet model architecture from the
`"One weird trick..." <https://arxiv.org/abs/1404.5997>`_ paper.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = AlexNet(**kwargs)
if pretrained:
model_path = './alexnet.pth.tar'
pretrained_model = torch.load(model_path)
model.load_state_dict(pretrained_model['state_dict'])
return model