forked from AbsInt/CompCert
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Conventions1.v
645 lines (581 loc) · 23.2 KB
/
Conventions1.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Function calling conventions and other conventions regarding the use of
machine registers and stack slots. *)
Require Import Coqlib.
Require Import Decidableplus.
Require Import AST.
Require Import Events.
Require Import Locations.
Require Archi.
(** * Classification of machine registers *)
(** Machine registers (type [mreg] in module [Locations]) are divided in
the following groups:
- Temporaries used for spilling, reloading, and parallel move operations.
- Allocatable registers, that can be assigned to RTL pseudo-registers.
These are further divided into:
-- Callee-save registers, whose value is preserved across a function call.
-- Caller-save registers that can be modified during a function call.
We follow the ARM application binary interface (EABI) in our choice
of callee- and caller-save registers.
*)
Definition is_callee_save (r: mreg): bool :=
match r with
| R0 | R1 | R2 | R3 | R12 => false
| R4 | R5 | R6 | R7 | R8 | R9 | R10 | R11 => true
| F0 | F1 | F2 | F3 | F4 | F5 | F6 | F7 => false
| F8 | F9 | F10 | F11 | F12 | F13 | F14 | F15 => true
end.
Definition int_caller_save_regs :=
R0 :: R1 :: R2 :: R3 :: R12 :: nil.
Definition float_caller_save_regs :=
F0 :: F1 :: F2 :: F3 :: F4 :: F5 :: F6 :: F7 :: nil.
Definition int_callee_save_regs :=
R4 :: R5 :: R6 :: R7 :: R8 :: R9 :: R10 :: R11 :: nil.
Definition float_callee_save_regs :=
F8 :: F9 :: F10 :: F11 :: F12 :: F13 :: F14 :: F15 :: nil.
Definition destroyed_at_call :=
List.filter (fun r => negb (is_callee_save r)) all_mregs.
Definition dummy_int_reg := R0. (**r Used in [Coloring]. *)
Definition dummy_float_reg := F0. (**r Used in [Coloring]. *)
Definition callee_save_type := mreg_type.
Definition is_float_reg (r: mreg): bool :=
match r with
| R0 | R1 | R2 | R3
| R4 | R5 | R6 | R7
| R8 | R9 | R10 | R11 | R12 => false
| F0 | F1 | F2 | F3 | F4 | F5 | F6 | F7
| F8 | F9 | F10 | F11 | F12 | F13 | F14 | F15 => true
end.
(** * Function calling conventions *)
(** The functions in this section determine the locations (machine registers
and stack slots) used to communicate arguments and results between the
caller and the callee during function calls. These locations are functions
of the signature of the function and of the call instruction.
Agreement between the caller and the callee on the locations to use
is guaranteed by our dynamic semantics for Cminor and RTL, which demand
that the signature of the call instruction is identical to that of the
called function.
Calling conventions are largely arbitrary: they must respect the properties
proved in this section (such as no overlapping between the locations
of function arguments), but this leaves much liberty in choosing actual
locations. *)
(** ** Location of function result *)
(** The result value of a function is passed back to the caller in
registers [R0] or [F0] or [R0,R1], depending on the type of the
returned value. We treat a function without result as a function
with one integer result.
For the "softfloat" convention, results of FP types should be passed
in [R0] or [R0,R1]. This doesn't fit the CompCert register model,
so we have code in [arm/TargetPrinter.ml] that inserts additional moves
to/from [F0].
Concerning endianness for 64bit values in register pairs, the contents
of the registers is as if the value had been loaded from memory
representation with a single LDM instruction. *)
Definition loc_result (s: signature) : rpair mreg :=
match s.(sig_res) with
| None => One R0
| Some (Tint | Tany32) => One R0
| Some (Tfloat | Tsingle | Tany64) => One F0
| Some Tlong => if Archi.big_endian
then Twolong R0 R1
else Twolong R1 R0
end.
(** The result registers have types compatible with that given in the signature. *)
Lemma loc_result_type:
forall sig,
subtype (proj_sig_res sig) (typ_rpair mreg_type (loc_result sig)) = true.
Proof.
intros. unfold proj_sig_res, loc_result. destruct (sig_res sig) as [[]|]; destruct Archi.big_endian; auto.
Qed.
(** The result locations are caller-save registers *)
Lemma loc_result_caller_save:
forall (s: signature),
forall_rpair (fun r => is_callee_save r = false) (loc_result s).
Proof.
intros.
unfold loc_result. destruct (sig_res s) as [[]|]; destruct Archi.big_endian; simpl; auto.
Qed.
(** If the result is in a pair of registers, those registers are distinct and have type [Tint] at least. *)
Lemma loc_result_pair:
forall sg,
match loc_result sg with
| One _ => True
| Twolong r1 r2 =>
r1 <> r2 /\ sg.(sig_res) = Some Tlong
/\ subtype Tint (mreg_type r1) = true /\ subtype Tint (mreg_type r2) = true
/\ Archi.ptr64 = false
end.
Proof.
intros; unfold loc_result; destruct (sig_res sg) as [[]|]; destruct Archi.big_endian; auto.
intuition congruence.
intuition congruence.
Qed.
(** The location of the result depends only on the result part of the signature *)
Lemma loc_result_exten:
forall s1 s2, s1.(sig_res) = s2.(sig_res) -> loc_result s1 = loc_result s2.
Proof.
intros. unfold loc_result. rewrite H; auto.
Qed.
(** ** Location of function arguments *)
(** For the "hardfloat" configuration, we use the following calling conventions,
adapted from the ARM EABI-HF:
- The first 4 integer arguments are passed in registers [R0] to [R3].
- The first 2 long integer arguments are passed in an aligned pair of
two integer registers.
- The first 8 single- and double-precision float arguments are passed
in registers [F0...F7]
- Extra arguments are passed on the stack, in [Outgoing] slots, consecutively
assigned (1 word for an integer or single argument, 2 words for a float
or a long), starting at word offset 0.
This convention is not quite that of the ARM EABI-HF, whereas single float
arguments are passed in 32-bit float registers. Unfortunately,
this does not fit the data model of CompCert. In [PrintAsm.ml]
we insert additional code around function calls that moves
data appropriately. *)
Definition int_param_regs :=
R0 :: R1 :: R2 :: R3 :: nil.
Definition float_param_regs :=
F0 :: F1 :: F2 :: F3 :: F4 :: F5 :: F6 :: F7 :: nil.
Definition ireg_param (n: Z) : mreg :=
match list_nth_z int_param_regs n with Some r => r | None => R0 end.
Definition freg_param (n: Z) : mreg :=
match list_nth_z float_param_regs n with Some r => r | None => F0 end.
Fixpoint loc_arguments_hf
(tyl: list typ) (ir fr ofs: Z) {struct tyl} : list (rpair loc) :=
match tyl with
| nil => nil
| (Tint | Tany32) as ty :: tys =>
if zlt ir 4
then One (R (ireg_param ir)) :: loc_arguments_hf tys (ir + 1) fr ofs
else One (S Outgoing ofs ty) :: loc_arguments_hf tys ir fr (ofs + 1)
| (Tfloat | Tany64) as ty :: tys =>
if zlt fr 8
then One (R (freg_param fr)) :: loc_arguments_hf tys ir (fr + 1) ofs
else let ofs := align ofs 2 in
One (S Outgoing ofs ty) :: loc_arguments_hf tys ir fr (ofs + 2)
| Tsingle :: tys =>
if zlt fr 8
then One (R (freg_param fr)) :: loc_arguments_hf tys ir (fr + 1) ofs
else One (S Outgoing ofs Tsingle) :: loc_arguments_hf tys ir fr (ofs + 1)
| Tlong :: tys =>
let ohi := if Archi.big_endian then 0 else 1 in
let olo := if Archi.big_endian then 1 else 0 in
let ir := align ir 2 in
if zlt ir 4
then Twolong (R (ireg_param (ir + ohi))) (R (ireg_param (ir + olo))) :: loc_arguments_hf tys (ir + 2) fr ofs
else let ofs := align ofs 2 in
Twolong (S Outgoing (ofs + ohi) Tint) (S Outgoing (ofs + olo) Tint) :: loc_arguments_hf tys ir fr (ofs + 2)
end.
(** For the "softfloat" configuration, as well as for variable-argument functions
in the "hardfloat" configuration, we use the default ARM EABI (not HF)
calling conventions:
- The first 4 integer arguments are passed in registers [R0] to [R3].
- The first 2 long integer arguments are passed in an aligned pair of
two integer registers.
- The first 2 double-precision float arguments are passed in [F0] or [F2]
- The first 4 single-precision float arguments are passed in [F0...F3]
- Integer arguments and float arguments are kept in sync so that
they can all be mapped back to [R0...R3] in [PrintAsm.ml].
- Extra arguments are passed on the stack, in [Outgoing] slots, consecutively
assigned (1 word for an integer or single argument, 2 words for a float
or a long), starting at word offset 0.
This convention is not quite that of the ARM EABI, whereas every float
argument are passed in one or two integer registers. Unfortunately,
this does not fit the data model of CompCert. In [PrintAsm.ml]
we insert additional code around function calls and returns that moves
data appropriately. *)
Fixpoint loc_arguments_sf
(tyl: list typ) (ofs: Z) {struct tyl} : list (rpair loc) :=
match tyl with
| nil => nil
| (Tint|Tany32) as ty :: tys =>
One (if zlt ofs 0 then R (ireg_param (ofs + 4)) else S Outgoing ofs ty)
:: loc_arguments_sf tys (ofs + 1)
| (Tfloat|Tany64) as ty :: tys =>
let ofs := align ofs 2 in
One (if zlt ofs 0 then R (freg_param (ofs + 4)) else S Outgoing ofs ty)
:: loc_arguments_sf tys (ofs + 2)
| Tsingle :: tys =>
One (if zlt ofs 0 then R (freg_param (ofs + 4)) else S Outgoing ofs Tsingle)
:: loc_arguments_sf tys (ofs + 1)
| Tlong :: tys =>
let ohi := if Archi.big_endian then 0 else 1 in
let olo := if Archi.big_endian then 1 else 0 in
let ofs := align ofs 2 in
Twolong (if zlt ofs 0 then R (ireg_param (ofs+ohi+4)) else S Outgoing (ofs+ohi) Tint)
(if zlt ofs 0 then R (ireg_param (ofs+olo+4)) else S Outgoing (ofs+olo) Tint)
:: loc_arguments_sf tys (ofs + 2)
end.
(** [loc_arguments s] returns the list of locations where to store arguments
when calling a function with signature [s]. *)
Definition loc_arguments (s: signature) : list (rpair loc) :=
match Archi.abi with
| Archi.Softfloat =>
loc_arguments_sf s.(sig_args) (-4)
| Archi.Hardfloat =>
if s.(sig_cc).(cc_vararg)
then loc_arguments_sf s.(sig_args) (-4)
else loc_arguments_hf s.(sig_args) 0 0 0
end.
(** [size_arguments s] returns the number of [Outgoing] slots used
to call a function with signature [s]. *)
Fixpoint size_arguments_hf (tyl: list typ) (ir fr ofs: Z) {struct tyl} : Z :=
match tyl with
| nil => ofs
| (Tint|Tany32) :: tys =>
if zlt ir 4
then size_arguments_hf tys (ir + 1) fr ofs
else size_arguments_hf tys ir fr (ofs + 1)
| (Tfloat|Tany64) :: tys =>
if zlt fr 8
then size_arguments_hf tys ir (fr + 1) ofs
else size_arguments_hf tys ir fr (align ofs 2 + 2)
| Tsingle :: tys =>
if zlt fr 8
then size_arguments_hf tys ir (fr + 1) ofs
else size_arguments_hf tys ir fr (ofs + 1)
| Tlong :: tys =>
let ir := align ir 2 in
if zlt ir 4
then size_arguments_hf tys (ir + 2) fr ofs
else size_arguments_hf tys ir fr (align ofs 2 + 2)
end.
Fixpoint size_arguments_sf (tyl: list typ) (ofs: Z) {struct tyl} : Z :=
match tyl with
| nil => Z.max 0 ofs
| (Tint | Tsingle | Tany32) :: tys => size_arguments_sf tys (ofs + 1)
| (Tfloat | Tlong | Tany64) :: tys => size_arguments_sf tys (align ofs 2 + 2)
end.
Definition size_arguments (s: signature) : Z :=
match Archi.abi with
| Archi.Softfloat =>
size_arguments_sf s.(sig_args) (-4)
| Archi.Hardfloat =>
if s.(sig_cc).(cc_vararg)
then size_arguments_sf s.(sig_args) (-4)
else size_arguments_hf s.(sig_args) 0 0 0
end.
(** Argument locations are either non-temporary registers or [Outgoing]
stack slots at nonnegative offsets. *)
Definition loc_argument_acceptable (l: loc) : Prop :=
match l with
| R r => is_callee_save r = false
| S Outgoing ofs ty => ofs >= 0 /\ (typealign ty | ofs)
| _ => False
end.
Definition loc_argument_charact (ofs: Z) (l: loc) : Prop :=
match l with
| R r => is_callee_save r = false
| S Outgoing ofs' ty => ofs' >= ofs /\ typealign ty = 1
| _ => False
end.
Remark ireg_param_caller_save: forall n, is_callee_save (ireg_param n) = false.
Proof.
unfold ireg_param; intros.
assert (A: forall r, In r int_param_regs -> is_callee_save r = false) by decide_goal.
destruct (list_nth_z int_param_regs n) as [r|] eqn:NTH.
apply A. eapply list_nth_z_in; eauto.
auto.
Qed.
Remark freg_param_caller_save: forall n, is_callee_save (freg_param n) = false.
Proof.
unfold freg_param; intros.
assert (A: forall r, In r float_param_regs -> is_callee_save r = false) by decide_goal.
destruct (list_nth_z float_param_regs n) as [r|] eqn:NTH.
apply A. eapply list_nth_z_in; eauto.
auto.
Qed.
Remark loc_arguments_hf_charact:
forall tyl ir fr ofs p,
In p (loc_arguments_hf tyl ir fr ofs) -> forall_rpair (loc_argument_charact ofs) p.
Proof.
assert (X: forall ofs1 ofs2 l, loc_argument_charact ofs2 l -> ofs1 <= ofs2 -> loc_argument_charact ofs1 l).
{ destruct l; simpl; intros; auto. destruct sl; auto. intuition omega. }
assert (Y: forall ofs1 ofs2 p, forall_rpair (loc_argument_charact ofs2) p -> ofs1 <= ofs2 -> forall_rpair (loc_argument_charact ofs1) p).
{ destruct p; simpl; intuition eauto. }
induction tyl; simpl loc_arguments_hf; intros.
elim H.
destruct a.
- (* int *)
destruct (zlt ir 4); destruct H.
subst. apply ireg_param_caller_save.
eapply IHtyl; eauto.
subst. split; [omega | auto].
eapply Y; eauto. omega.
- (* float *)
destruct (zlt fr 8); destruct H.
subst. apply freg_param_caller_save.
eapply IHtyl; eauto.
subst. split. apply Z.le_ge. apply align_le. omega. auto.
eapply Y; eauto. apply Z.le_trans with (align ofs 2). apply align_le; omega. omega.
- (* long *)
set (ir' := align ir 2) in *.
assert (ofs <= align ofs 2) by (apply align_le; omega).
destruct (zlt ir' 4).
destruct H. subst p. split; apply ireg_param_caller_save.
eapply IHtyl; eauto.
destruct H. subst p. split; destruct Archi.big_endian; (split; [ omega | auto ]).
eapply Y. eapply IHtyl; eauto. omega.
- (* single *)
destruct (zlt fr 8); destruct H.
subst. apply freg_param_caller_save.
eapply IHtyl; eauto.
subst. split; [omega|auto].
eapply Y; eauto. omega.
- (* any32 *)
destruct (zlt ir 4); destruct H.
subst. apply ireg_param_caller_save.
eapply IHtyl; eauto.
subst. split; [omega | auto].
eapply Y; eauto. omega.
- (* any64 *)
destruct (zlt fr 8); destruct H.
subst. apply freg_param_caller_save.
eapply IHtyl; eauto.
subst. split. apply Z.le_ge. apply align_le. omega. auto.
eapply Y; eauto. apply Z.le_trans with (align ofs 2). apply align_le; omega. omega.
Qed.
Remark loc_arguments_sf_charact:
forall tyl ofs p,
In p (loc_arguments_sf tyl ofs) -> forall_rpair (loc_argument_charact (Z.max 0 ofs)) p.
Proof.
assert (X: forall ofs1 ofs2 l, loc_argument_charact (Z.max 0 ofs2) l -> ofs1 <= ofs2 -> loc_argument_charact (Z.max 0 ofs1) l).
{ destruct l; simpl; intros; auto. destruct sl; auto. intuition xomega. }
assert (Y: forall ofs1 ofs2 p, forall_rpair (loc_argument_charact (Z.max 0 ofs2)) p -> ofs1 <= ofs2 -> forall_rpair (loc_argument_charact (Z.max 0 ofs1)) p).
{ destruct p; simpl; intuition eauto. }
induction tyl; simpl loc_arguments_sf; intros.
elim H.
destruct a.
- (* int *)
destruct H.
destruct (zlt ofs 0); subst p.
apply ireg_param_caller_save.
split; [xomega|auto].
eapply Y; eauto. omega.
- (* float *)
set (ofs' := align ofs 2) in *.
assert (ofs <= ofs') by (apply align_le; omega).
destruct H.
destruct (zlt ofs' 0); subst p.
apply freg_param_caller_save.
split; [xomega|auto].
eapply Y. eapply IHtyl; eauto. omega.
- (* long *)
set (ofs' := align ofs 2) in *.
assert (ofs <= ofs') by (apply align_le; omega).
destruct H.
destruct (zlt ofs' 0); subst p.
split; apply ireg_param_caller_save.
split; destruct Archi.big_endian; (split; [xomega|auto]).
eapply Y. eapply IHtyl; eauto. omega.
- (* single *)
destruct H.
destruct (zlt ofs 0); subst p.
apply freg_param_caller_save.
split; [xomega|auto].
eapply Y; eauto. omega.
- (* any32 *)
destruct H.
destruct (zlt ofs 0); subst p.
apply ireg_param_caller_save.
split; [xomega|auto].
eapply Y; eauto. omega.
- (* any64 *)
set (ofs' := align ofs 2) in *.
assert (ofs <= ofs') by (apply align_le; omega).
destruct H.
destruct (zlt ofs' 0); subst p.
apply freg_param_caller_save.
split; [xomega|auto].
eapply Y. eapply IHtyl; eauto. omega.
Qed.
Lemma loc_arguments_acceptable:
forall (s: signature) (p: rpair loc),
In p (loc_arguments s) -> forall_rpair loc_argument_acceptable p.
Proof.
unfold loc_arguments; intros.
assert (X: forall l, loc_argument_charact 0 l -> loc_argument_acceptable l).
{ unfold loc_argument_charact, loc_argument_acceptable.
destruct l as [r | [] ofs ty]; auto. intros (A & B); split; auto. rewrite B; apply Z.divide_1_l. }
assert (Y: forall p, forall_rpair (loc_argument_charact 0) p -> forall_rpair loc_argument_acceptable p).
{ destruct p0; simpl; intuition auto. }
assert (In p (loc_arguments_sf (sig_args s) (-4)) -> forall_rpair loc_argument_acceptable p).
{ intros. exploit loc_arguments_sf_charact; eauto. }
assert (In p (loc_arguments_hf (sig_args s) 0 0 0) -> forall_rpair loc_argument_acceptable p).
{ intros. exploit loc_arguments_hf_charact; eauto. }
destruct Archi.abi; [ | destruct (cc_vararg (sig_cc s)) ]; auto.
Qed.
Hint Resolve loc_arguments_acceptable: locs.
(** The offsets of [Outgoing] arguments are below [size_arguments s]. *)
Remark size_arguments_hf_above:
forall tyl ir fr ofs0,
ofs0 <= size_arguments_hf tyl ir fr ofs0.
Proof.
induction tyl; simpl; intros.
omega.
destruct a.
destruct (zlt ir 4); eauto. apply Z.le_trans with (ofs0 + 1); auto; omega.
destruct (zlt fr 8); eauto.
apply Z.le_trans with (align ofs0 2). apply align_le; omega.
apply Z.le_trans with (align ofs0 2 + 2); auto; omega.
set (ir' := align ir 2).
destruct (zlt ir' 4); eauto.
apply Z.le_trans with (align ofs0 2). apply align_le; omega.
apply Z.le_trans with (align ofs0 2 + 2); auto; omega.
destruct (zlt fr 8); eauto.
apply Z.le_trans with (ofs0 + 1); eauto. omega.
destruct (zlt ir 4); eauto. apply Z.le_trans with (ofs0 + 1); auto; omega.
destruct (zlt fr 8); eauto.
apply Z.le_trans with (align ofs0 2). apply align_le; omega.
apply Z.le_trans with (align ofs0 2 + 2); auto; omega.
Qed.
Remark size_arguments_sf_above:
forall tyl ofs0,
Z.max 0 ofs0 <= size_arguments_sf tyl ofs0.
Proof.
induction tyl; simpl; intros.
omega.
destruct a; (eapply Z.le_trans; [idtac|eauto]).
xomega.
assert (ofs0 <= align ofs0 2) by (apply align_le; omega). xomega.
assert (ofs0 <= align ofs0 2) by (apply align_le; omega). xomega.
xomega.
xomega.
assert (ofs0 <= align ofs0 2) by (apply align_le; omega). xomega.
Qed.
Lemma size_arguments_above:
forall s, size_arguments s >= 0.
Proof.
intros; unfold size_arguments. apply Z.le_ge.
assert (0 <= size_arguments_sf (sig_args s) (-4)).
{ change 0 with (Z.max 0 (-4)). apply size_arguments_sf_above. }
assert (0 <= size_arguments_hf (sig_args s) 0 0 0).
{ apply size_arguments_hf_above. }
destruct Archi.abi; [ | destruct (cc_vararg (sig_cc s)) ]; auto.
Qed.
Lemma loc_arguments_hf_bounded:
forall ofs ty tyl ir fr ofs0,
In (S Outgoing ofs ty) (regs_of_rpairs (loc_arguments_hf tyl ir fr ofs0)) ->
ofs + typesize ty <= size_arguments_hf tyl ir fr ofs0.
Proof.
induction tyl; simpl; intros.
elim H.
destruct a.
- (* int *)
destruct (zlt ir 4); destruct H.
discriminate.
eauto.
inv H. apply size_arguments_hf_above.
eauto.
- (* float *)
destruct (zlt fr 8); destruct H.
discriminate.
eauto.
inv H. apply size_arguments_hf_above.
eauto.
- (* long *)
destruct (zlt (align ir 2) 4).
destruct H. discriminate. destruct H. discriminate. eauto.
destruct Archi.big_endian.
destruct H. inv H.
eapply Z.le_trans. 2: apply size_arguments_hf_above. simpl; omega.
destruct H. inv H.
rewrite <- Z.add_assoc. simpl. apply size_arguments_hf_above.
eauto.
destruct H. inv H.
rewrite <- Z.add_assoc. simpl. apply size_arguments_hf_above.
destruct H. inv H.
eapply Z.le_trans. 2: apply size_arguments_hf_above. simpl; omega.
eauto.
- (* float *)
destruct (zlt fr 8); destruct H.
discriminate.
eauto.
inv H. apply size_arguments_hf_above.
eauto.
- (* any32 *)
destruct (zlt ir 4); destruct H.
discriminate.
eauto.
inv H. apply size_arguments_hf_above.
eauto.
- (* any64 *)
destruct (zlt fr 8); destruct H.
discriminate.
eauto.
inv H. apply size_arguments_hf_above.
eauto.
Qed.
Lemma loc_arguments_sf_bounded:
forall ofs ty tyl ofs0,
In (S Outgoing ofs ty) (regs_of_rpairs (loc_arguments_sf tyl ofs0)) ->
Z.max 0 (ofs + typesize ty) <= size_arguments_sf tyl ofs0.
Proof.
induction tyl; simpl; intros.
elim H.
destruct a.
- (* int *)
destruct H.
destruct (zlt ofs0 0); inv H. apply size_arguments_sf_above.
eauto.
- (* float *)
destruct H.
destruct (zlt (align ofs0 2) 0); inv H. apply size_arguments_sf_above.
eauto.
- (* long *)
destruct H.
destruct Archi.big_endian.
destruct (zlt (align ofs0 2) 0); inv H.
eapply Z.le_trans. 2: apply size_arguments_sf_above. simpl; xomega.
destruct (zlt (align ofs0 2) 0); inv H.
rewrite <- Z.add_assoc. simpl. apply size_arguments_sf_above.
destruct H.
destruct Archi.big_endian.
destruct (zlt (align ofs0 2) 0); inv H.
rewrite <- Z.add_assoc. simpl. apply size_arguments_sf_above.
destruct (zlt (align ofs0 2) 0); inv H.
eapply Z.le_trans. 2: apply size_arguments_sf_above. simpl; xomega.
eauto.
- (* float *)
destruct H.
destruct (zlt ofs0 0); inv H. apply size_arguments_sf_above.
eauto.
- (* any32 *)
destruct H.
destruct (zlt ofs0 0); inv H. apply size_arguments_sf_above.
eauto.
- (* any64 *)
destruct H.
destruct (zlt (align ofs0 2) 0); inv H. apply size_arguments_sf_above.
eauto.
Qed.
Lemma loc_arguments_bounded:
forall (s: signature) (ofs: Z) (ty: typ),
In (S Outgoing ofs ty) (regs_of_rpairs (loc_arguments s)) ->
ofs + typesize ty <= size_arguments s.
Proof.
unfold loc_arguments, size_arguments; intros.
assert (In (S Outgoing ofs ty) (regs_of_rpairs (loc_arguments_sf (sig_args s) (-4))) ->
ofs + typesize ty <= size_arguments_sf (sig_args s) (-4)).
{ intros. eapply Z.le_trans. 2: eapply loc_arguments_sf_bounded; eauto. xomega. }
assert (In (S Outgoing ofs ty) (regs_of_rpairs (loc_arguments_hf (sig_args s) 0 0 0)) ->
ofs + typesize ty <= size_arguments_hf (sig_args s) 0 0 0).
{ intros. eapply loc_arguments_hf_bounded; eauto. }
destruct Archi.abi; [ | destruct (cc_vararg (sig_cc s)) ]; eauto.
Qed.
Lemma loc_arguments_main:
loc_arguments signature_main = nil.
Proof.
unfold loc_arguments.
destruct Archi.abi; reflexivity.
Qed.