forked from AbsInt/CompCert
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Camlcoq.ml
411 lines (328 loc) · 11.8 KB
/
Camlcoq.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU Lesser General Public License as *)
(* published by the Free Software Foundation, either version 2.1 of *)
(* the License, or (at your option) any later version. *)
(* This file is also distributed under the terms of the *)
(* INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(* Library of useful Caml <-> Coq conversions *)
open Datatypes
open BinNums
open BinNat
open BinInt
open BinPos
open! Floats
(* Coq's [nat] type and some of its operations *)
module Nat = struct
type t = nat = O | S of t
let rec to_int = function
| O -> 0
| S n -> succ (to_int n)
let rec to_int32 = function
| O -> 0l
| S n -> Int32.succ(to_int32 n)
let rec of_int n =
assert (n >= 0);
if n = 0 then O else S (of_int (pred n))
let rec of_int32 n =
assert (n >= 0l);
if n = 0l then O else S (of_int32 (Int32.pred n))
end
(* Coq's [positive] type and some of its operations *)
module P = struct
type t = positive = Coq_xI of t | Coq_xO of t | Coq_xH
let one = Coq_xH
let succ = Pos.succ
let pred = Pos.pred
let eq x y = (Pos.compare x y = Eq)
let lt x y = (Pos.compare x y = Lt)
let gt x y = (Pos.compare x y = Gt)
let le x y = (Pos.compare x y <> Gt)
let ge x y = (Pos.compare x y <> Lt)
let compare x y = match Pos.compare x y with Lt -> -1 | Eq -> 0 | Gt -> 1
let rec to_int = function
| Coq_xI p -> let n = to_int p in n + n + 1
| Coq_xO p -> let n = to_int p in n + n
| Coq_xH -> 1
let rec of_int n =
if n land 1 = 0 then
if n = 0 then assert false else Coq_xO (of_int (n lsr 1))
else
if n = 1 then Coq_xH else Coq_xI (of_int (n lsr 1))
let rec to_int32 = function
| Coq_xI p -> Int32.add (Int32.shift_left (to_int32 p) 1) 1l
| Coq_xO p -> Int32.shift_left (to_int32 p) 1
| Coq_xH -> 1l
let rec of_int32 n =
if Int32.logand n 1l = 0l then
if n = 0l
then assert false
else Coq_xO (of_int32 (Int32.shift_right_logical n 1))
else
if n = 1l
then Coq_xH
else Coq_xI (of_int32 (Int32.shift_right_logical n 1))
let rec to_int64 = function
| Coq_xI p -> Int64.add (Int64.shift_left (to_int64 p) 1) 1L
| Coq_xO p -> Int64.shift_left (to_int64 p) 1
| Coq_xH -> 1L
let rec of_int64 n =
if Int64.logand n 1L = 0L then
if n = 0L
then assert false
else Coq_xO (of_int64 (Int64.shift_right_logical n 1))
else
if n = 1L
then Coq_xH
else Coq_xI (of_int64 (Int64.shift_right_logical n 1))
let (=) = eq
let (<) = lt
let (<=) = le
let (>) = gt
let (>=) = ge
end
(* Coq's [N] type and some of its operations *)
module N = struct
type t = coq_N = N0 | Npos of positive
let zero = N0
let one = Npos Coq_xH
let eq x y = (N.compare x y = Eq)
let lt x y = (N.compare x y = Lt)
let gt x y = (N.compare x y = Gt)
let le x y = (N.compare x y <> Gt)
let ge x y = (N.compare x y <> Lt)
let compare x y = match N.compare x y with Lt -> -1 | Eq -> 0 | Gt -> 1
let to_int = function
| N0 -> 0
| Npos p -> P.to_int p
let of_int n =
if n = 0 then N0 else Npos (P.of_int n)
let to_int32 = function
| N0 -> 0l
| Npos p -> P.to_int32 p
let of_int32 n =
if n = 0l then N0 else Npos (P.of_int32 n)
let to_int64 = function
| N0 -> 0L
| Npos p -> P.to_int64 p
let of_int64 n =
if n = 0L then N0 else Npos (P.of_int64 n)
let (=) = eq
let (<) = lt
let (<=) = le
let (>) = gt
let (>=) = ge
end
(* Coq's [Z] type and some of its operations *)
module Z = struct
type t = coq_Z = Z0 | Zpos of positive | Zneg of positive
let zero = Z0
let one = Zpos Coq_xH
let mone = Zneg Coq_xH
let succ = Z.succ
let pred = Z.pred
let neg = Z.opp
let add = Z.add
let sub = Z.sub
let mul = Z.mul
let div = Z.div
let modulo = Z.modulo
let eq x y = (Z.compare x y = Eq)
let lt x y = (Z.compare x y = Lt)
let gt x y = (Z.compare x y = Gt)
let le x y = (Z.compare x y <> Gt)
let ge x y = (Z.compare x y <> Lt)
let compare x y = match Z.compare x y with Lt -> -1 | Eq -> 0 | Gt -> 1
let to_int = function
| Z0 -> 0
| Zpos p -> P.to_int p
| Zneg p -> - (P.to_int p)
let of_sint n =
if n = 0 then Z0 else
if n > 0 then Zpos (P.of_int n)
else Zneg (P.of_int (-n))
let of_uint n =
if n = 0 then Z0 else Zpos (P.of_int n)
let to_int32 = function
| Z0 -> 0l
| Zpos p -> P.to_int32 p
| Zneg p -> Int32.neg (P.to_int32 p)
let of_sint32 n =
if n = 0l then Z0 else
if n > 0l then Zpos (P.of_int32 n)
else Zneg (P.of_int32 (Int32.neg n))
let of_uint32 n =
if n = 0l then Z0 else Zpos (P.of_int32 n)
let to_int64 = function
| Z0 -> 0L
| Zpos p -> P.to_int64 p
| Zneg p -> Int64.neg (P.to_int64 p)
let of_sint64 n =
if n = 0L then Z0 else
if n > 0L then Zpos (P.of_int64 n)
else Zneg (P.of_int64 (Int64.neg n))
let of_uint64 n =
if n = 0L then Z0 else Zpos (P.of_int64 n)
let of_N = Z.of_N
let rec to_string_rec base buff x =
if x = Z0 then () else begin
let (q, r) = Z.div_eucl x base in
to_string_rec base buff q;
let d = to_int r in
Buffer.add_char buff (Char.chr
(if d < 10 then Char.code '0' + d
else Char.code 'A' + d - 10))
end
let to_string_aux base x =
match x with
| Z0 -> "0"
| Zpos _ ->
let buff = Buffer.create 10 in
to_string_rec base buff x;
Buffer.contents buff
| Zneg p ->
let buff = Buffer.create 10 in
Buffer.add_char buff '-';
to_string_rec base buff (Zpos p);
Buffer.contents buff
let dec = to_string_aux (of_uint 10)
let hex = to_string_aux (of_uint 16)
let to_string = dec
let is_power2 x =
gt x zero && eq (Z.coq_land x (pred x)) zero
let (+) = add
let (-) = sub
let ( * ) = mul
let ( / ) = div
let (=) = eq
let (<) = lt
let (<=) = le
let (>) = gt
let (>=) = ge
end
(* Alternate names *)
let camlint_of_coqint : Integers.Int.int -> int32 = Z.to_int32
let coqint_of_camlint : int32 -> Integers.Int.int = Z.of_uint32
(* interpret the int32 as unsigned so that result Z is in range for int *)
let camlint64_of_coqint : Integers.Int64.int -> int64 = Z.to_int64
let coqint_of_camlint64 : int64 -> Integers.Int64.int = Z.of_uint64
(* interpret the int64 as unsigned so that result Z is in range for int *)
let camlint64_of_ptrofs : Integers.Ptrofs.int -> int64 =
fun x -> Z.to_int64 (Integers.Ptrofs.signed x)
(* Atoms (positive integers representing strings) *)
type atom = positive
let atom_of_string = (Hashtbl.create 17 : (string, atom) Hashtbl.t)
let string_of_atom = (Hashtbl.create 17 : (atom, string) Hashtbl.t)
let next_atom = ref Coq_xH
let use_canonical_atoms = ref false
(* If [use_canonical_atoms] is false, strings are numbered from 1 up
in the order in which they are encountered. This produces small
numbers, and is therefore efficient, but the number for a given
string may differ between the compilation of different units.
If [use_canonical_atoms] is true, strings are Huffman-encoded as bit
sequences, which are then encoded as positive numbers. The same
string is always represented by the same number in all compilation
units. However, the numbers are bigger than in the first
implementation. Also, this places a hard limit on the number of
fresh identifiers that can be generated starting with
[first_unused_ident]. *)
let rec append_bits_pos nbits n p =
if nbits <= 0 then p else
if n land 1 = 0
then Coq_xO (append_bits_pos (nbits - 1) (n lsr 1) p)
else Coq_xI (append_bits_pos (nbits - 1) (n lsr 1) p)
(* The encoding of strings as bit sequences is optimized for C identifiers:
- numbers are encoded as a 6-bit integer between 0 and 9
- lowercase letters are encoded as a 6-bit integer between 10 and 35
- uppercase letters are encoded as a 6-bit integer between 36 and 61
- the underscore character is encoded as the 6-bit integer 62
- all other characters are encoded as 6 "one" bits followed by
the 8-bit encoding of the character. *)
let append_char_pos c p =
match c with
| '0'..'9' -> append_bits_pos 6 (Char.code c - Char.code '0') p
| 'a'..'z' -> append_bits_pos 6 (Char.code c - Char.code 'a' + 10) p
| 'A'..'Z' -> append_bits_pos 6 (Char.code c - Char.code 'A' + 36) p
| '_' -> append_bits_pos 6 62 p
| _ -> append_bits_pos 6 63 (append_bits_pos 8 (Char.code c) p)
(* The empty string is represented as the positive "1", that is, [xH]. *)
let pos_of_string s =
let rec encode i accu =
if i < 0 then accu else encode (i - 1) (append_char_pos s.[i] accu)
in encode (String.length s - 1) Coq_xH
let fresh_atom () =
let a = !next_atom in
next_atom := Pos.succ !next_atom;
a
let intern_string s =
try
Hashtbl.find atom_of_string s
with Not_found ->
let a =
if !use_canonical_atoms then pos_of_string s else fresh_atom () in
Hashtbl.add atom_of_string s a;
Hashtbl.add string_of_atom a s;
a
let extern_atom a =
try
Hashtbl.find string_of_atom a
with Not_found ->
Printf.sprintf "$%d" (P.to_int a)
(* Ignoring the terminating "1" bit, canonical encodings of strings can
be viewed as lists of bits, formed by concatenation of 6-bit fragments
(for letters, numbers, and underscore) and 14-bit fragments (for other
characters). Hence, not all positive numbers are canonical encodings:
only those whose log2 is of the form [6n + 14m].
Here are the first intervals of positive numbers corresponding to strings:
- [1, 1] for the empty string
- [2^6, 2^7-1] for one "compact" character
- [2^12, 2^13-1] for two "compact" characters
- [2^14, 2^14-1] for one "escaped" character
Hence, between 2^7 and 2^12 - 1, we have 3968 consecutive positive
numbers that cannot be the encoding of a string. These are the positive
numbers we'll use as temporaries in the SimplExpr pass if canonical
atoms are in use.
If short atoms are used, we just number the temporaries consecutively
starting one above the last generated atom.
*)
let first_unused_ident () =
if !use_canonical_atoms
then P.of_int 128
else !next_atom
(* Strings *)
let camlstring_of_coqstring (s: char list) =
let r = Bytes.create (List.length s) in
let rec fill pos = function
| [] -> r
| c :: s -> Bytes.set r pos c; fill (pos + 1) s
in Bytes.to_string (fill 0 s)
let coqstring_of_camlstring s =
let rec cstring accu pos =
if pos < 0 then accu else cstring (s.[pos] :: accu) (pos - 1)
in cstring [] (String.length s - 1)
let coqstring_uppercase_ascii_of_camlstring s =
let rec cstring accu pos =
if pos < 0 then accu else
let d = if s.[pos] >= 'a' && s.[pos] <= 'z' then
Char.chr (Char.code s.[pos] - 32)
else
s.[pos] in
cstring (d :: accu) (pos - 1)
in cstring [] (String.length s - 1)
(* Floats *)
let coqfloat_of_camlfloat f =
Float.of_bits(coqint_of_camlint64(Int64.bits_of_float f))
let camlfloat_of_coqfloat f =
Int64.float_of_bits(camlint64_of_coqint(Float.to_bits f))
let coqfloat32_of_camlfloat f =
Float32.of_bits(coqint_of_camlint(Int32.bits_of_float f))
let camlfloat_of_coqfloat32 f =
Int32.float_of_bits(camlint_of_coqint(Float32.to_bits f))