From c03d2c43b988a3cd8161b203cd41cc7f234daa31 Mon Sep 17 00:00:00 2001 From: "A. Unique TensorFlower" Date: Tue, 5 Jun 2018 13:48:40 -0700 Subject: [PATCH] Go: Update generated wrapper functions for TensorFlow ops. PiperOrigin-RevId: 199351707 --- tensorflow/go/op/wrappers.go | 120 +++++++++++++++++------------------ 1 file changed, 60 insertions(+), 60 deletions(-) diff --git a/tensorflow/go/op/wrappers.go b/tensorflow/go/op/wrappers.go index e4f22692d8b20c..550ef8944dc9a6 100644 --- a/tensorflow/go/op/wrappers.go +++ b/tensorflow/go/op/wrappers.go @@ -21947,46 +21947,6 @@ func MatrixExponential(scope *Scope, input tf.Output) (output tf.Output) { return op.Output(0) } -// Computes the matrix logarithm of one or more square matrices: -// -// -// log(exp(A)) = A -// -// This op is only defined for complex matrices. If A is positive-definite and -// real, then casting to a complex matrix, taking the logarithm and casting back -// to a real matrix will give the correct result. -// -// This function computes the matrix logarithm using the Schur-Parlett algorithm. -// Details of the algorithm can be found in Section 11.6.2 of: -// Nicholas J. Higham, Functions of Matrices: Theory and Computation, SIAM 2008. -// ISBN 978-0-898716-46-7. -// -// The input is a tensor of shape `[..., M, M]` whose inner-most 2 dimensions -// form square matrices. The output is a tensor of the same shape as the input -// containing the exponential for all input submatrices `[..., :, :]`. -// -// Arguments: -// input: Shape is `[..., M, M]`. -// -// Returns Shape is `[..., M, M]`. -// -// @compatibility(scipy) -// Equivalent to scipy.linalg.logm -// @end_compatibility -func MatrixLogarithm(scope *Scope, input tf.Output) (output tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "MatrixLogarithm", - Input: []tf.Input{ - input, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -} - // QueueDequeueUpToV2Attr is an optional argument to QueueDequeueUpToV2. type QueueDequeueUpToV2Attr func(optionalAttr) @@ -24398,6 +24358,46 @@ func NonMaxSuppressionV2(scope *Scope, boxes tf.Output, scores tf.Output, max_ou return op.Output(0) } +// Computes the matrix logarithm of one or more square matrices: +// +// +// log(exp(A)) = A +// +// This op is only defined for complex matrices. If A is positive-definite and +// real, then casting to a complex matrix, taking the logarithm and casting back +// to a real matrix will give the correct result. +// +// This function computes the matrix logarithm using the Schur-Parlett algorithm. +// Details of the algorithm can be found in Section 11.6.2 of: +// Nicholas J. Higham, Functions of Matrices: Theory and Computation, SIAM 2008. +// ISBN 978-0-898716-46-7. +// +// The input is a tensor of shape `[..., M, M]` whose inner-most 2 dimensions +// form square matrices. The output is a tensor of the same shape as the input +// containing the exponential for all input submatrices `[..., :, :]`. +// +// Arguments: +// input: Shape is `[..., M, M]`. +// +// Returns Shape is `[..., M, M]`. +// +// @compatibility(scipy) +// Equivalent to scipy.linalg.logm +// @end_compatibility +func MatrixLogarithm(scope *Scope, input tf.Output) (output tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "MatrixLogarithm", + Input: []tf.Input{ + input, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // EncodeProtoAttr is an optional argument to EncodeProto. type EncodeProtoAttr func(optionalAttr) @@ -29425,6 +29425,26 @@ func Snapshot(scope *Scope, input tf.Output) (output tf.Output) { return op.Output(0) } +// Returns a tensor of zeros with the same shape and type as x. +// +// Arguments: +// x: a tensor of type T. +// +// Returns a tensor of the same shape and type as x but filled with zeros. +func ZerosLike(scope *Scope, x tf.Output) (y tf.Output) { + if scope.Err() != nil { + return + } + opspec := tf.OpSpec{ + Type: "ZerosLike", + Input: []tf.Input{ + x, + }, + } + op := scope.AddOperation(opspec) + return op.Output(0) +} + // AbortAttr is an optional argument to Abort. type AbortAttr func(optionalAttr) @@ -30690,23 +30710,3 @@ func GuaranteeConst(scope *Scope, input tf.Output) (output tf.Output) { op := scope.AddOperation(opspec) return op.Output(0) } - -// Returns a tensor of zeros with the same shape and type as x. -// -// Arguments: -// x: a tensor of type T. -// -// Returns a tensor of the same shape and type as x but filled with zeros. -func ZerosLike(scope *Scope, x tf.Output) (y tf.Output) { - if scope.Err() != nil { - return - } - opspec := tf.OpSpec{ - Type: "ZerosLike", - Input: []tf.Input{ - x, - }, - } - op := scope.AddOperation(opspec) - return op.Output(0) -}