forked from zoeyuchao/habitat-lab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_dataset.py
266 lines (213 loc) · 8.74 KB
/
test_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from itertools import groupby, islice
import pytest
from habitat.core.dataset import Dataset, Episode
def _construct_dataset(num_episodes, num_groups=10):
episodes = []
for i in range(num_episodes):
episode = Episode(
episode_id=str(i),
scene_id="scene_id_" + str(i % num_groups),
start_position=[0, 0, 0],
start_rotation=[0, 0, 0, 1],
)
episodes.append(episode)
dataset = Dataset()
dataset.episodes = episodes
return dataset
def test_scene_ids():
dataset = _construct_dataset(100)
assert dataset.scene_ids == ["scene_id_" + str(ii) for ii in range(10)]
def test_get_scene_episodes():
dataset = _construct_dataset(100)
scene = "scene_id_0"
scene_episodes = dataset.get_scene_episodes(scene)
assert len(scene_episodes) == 10
for ep in scene_episodes:
assert ep.scene_id == scene
def test_filter_episodes():
dataset = _construct_dataset(100)
def filter_fn(episode: Episode) -> bool:
return int(episode.episode_id) % 2 == 0
filtered_dataset = dataset.filter_episodes(filter_fn)
assert len(filtered_dataset.episodes) == 50
for ep in filtered_dataset.episodes:
assert filter_fn(ep)
def test_get_splits_even_split_possible():
dataset = _construct_dataset(100)
splits = dataset.get_splits(10)
assert len(splits) == 10
for split in splits:
assert len(split.episodes) == 10
def test_get_splits_with_remainder():
dataset = _construct_dataset(100)
splits = dataset.get_splits(11)
assert len(splits) == 11
for split in splits:
assert len(split.episodes) == 9
def test_get_splits_num_episodes_specified():
dataset = _construct_dataset(100)
splits = dataset.get_splits(10, 3, False)
assert len(splits) == 10
for split in splits:
assert len(split.episodes) == 3
assert len(dataset.episodes) == 100
dataset = _construct_dataset(100)
splits = dataset.get_splits(10, 10)
assert len(splits) == 10
for split in splits:
assert len(split.episodes) == 10
assert len(dataset.episodes) == 100
dataset = _construct_dataset(100)
splits = dataset.get_splits(10, 3, True)
assert len(splits) == 10
for split in splits:
assert len(split.episodes) == 3
assert len(dataset.episodes) == 30
dataset = _construct_dataset(100)
try:
splits = dataset.get_splits(10, 20)
assert False
except AssertionError:
pass
def test_get_splits_collate_scenes():
dataset = _construct_dataset(10000)
splits = dataset.get_splits(10, 23, collate_scene_ids=True)
assert len(splits) == 10
for split in splits:
assert len(split.episodes) == 23
prev_ids = set()
for ii, ep in enumerate(split.episodes):
if ep.scene_id not in prev_ids:
prev_ids.add(ep.scene_id)
else:
assert split.episodes[ii - 1].scene_id == ep.scene_id
dataset = _construct_dataset(10000)
splits = dataset.get_splits(10, 200, collate_scene_ids=False)
assert len(splits) == 10
for split in splits:
prev_ids = set()
found_not_collated = False
for ii, ep in enumerate(split.episodes):
if ep.scene_id not in prev_ids:
prev_ids.add(ep.scene_id)
else:
if split.episodes[ii - 1].scene_id != ep.scene_id:
found_not_collated = True
break
assert found_not_collated
dataset = _construct_dataset(10000)
splits = dataset.get_splits(10, collate_scene_ids=True)
assert len(splits) == 10
for split in splits:
assert len(split.episodes) == 1000
prev_ids = set()
for ii, ep in enumerate(split.episodes):
if ep.scene_id not in prev_ids:
prev_ids.add(ep.scene_id)
else:
assert split.episodes[ii - 1].scene_id == ep.scene_id
dataset = _construct_dataset(10000)
splits = dataset.get_splits(10, collate_scene_ids=False)
assert len(splits) == 10
for split in splits:
prev_ids = set()
found_not_collated = False
for ii, ep in enumerate(split.episodes):
if ep.scene_id not in prev_ids:
prev_ids.add(ep.scene_id)
else:
if split.episodes[ii - 1].scene_id != ep.scene_id:
found_not_collated = True
break
assert found_not_collated
def test_get_splits_sort_by_episode_id():
dataset = _construct_dataset(10000)
splits = dataset.get_splits(10, 23, sort_by_episode_id=True)
assert len(splits) == 10
for split in splits:
assert len(split.episodes) == 23
for ii, ep in enumerate(split.episodes):
if ii > 0:
assert ep.episode_id >= split.episodes[ii - 1].episode_id
def test_get_uneven_splits():
dataset = _construct_dataset(10000)
splits = dataset.get_splits(9, allow_uneven_splits=False)
assert len(splits) == 9
assert sum([len(split.episodes) for split in splits]) == (10000 // 9) * 9
dataset = _construct_dataset(10000)
splits = dataset.get_splits(9, allow_uneven_splits=True)
assert len(splits) == 9
assert sum([len(split.episodes) for split in splits]) == 10000
dataset = _construct_dataset(10000)
splits = dataset.get_splits(10, allow_uneven_splits=True)
assert len(splits) == 10
assert sum([len(split.episodes) for split in splits]) == 10000
def test_sample_episodes():
dataset = _construct_dataset(1000)
ep_iter = dataset.get_episode_iterator(
num_episode_sample=1000, cycle=False
)
assert len(list(ep_iter)) == 1000
ep_iter = dataset.get_episode_iterator(num_episode_sample=0, cycle=False)
assert len(list(ep_iter)) == 0
with pytest.raises(ValueError):
dataset.get_episode_iterator(num_episode_sample=1001, cycle=False)
ep_iter = dataset.get_episode_iterator(num_episode_sample=100, cycle=True)
ep_id_list = [e.episode_id for e in list(islice(ep_iter, 100))]
assert len(set(ep_id_list)) == 100
next_episode = next(ep_iter)
assert next_episode.episode_id in ep_id_list
ep_iter = dataset.get_episode_iterator(num_episode_sample=0, cycle=False)
with pytest.raises(StopIteration):
next(ep_iter)
def test_iterator_cycle():
dataset = _construct_dataset(100)
ep_iter = dataset.get_episode_iterator(
cycle=True, shuffle=False, group_by_scene=False
)
for i in range(200):
episode = next(ep_iter)
assert episode.episode_id == dataset.episodes[i % 100].episode_id
ep_iter = dataset.get_episode_iterator(cycle=True, num_episode_sample=20)
episodes = list(islice(ep_iter, 20))
for i in range(200):
episode = next(ep_iter)
assert episode.episode_id == episodes[i % 20].episode_id
def test_iterator_shuffle():
dataset = _construct_dataset(100)
episode_iter = dataset.get_episode_iterator(shuffle=True)
first_round_episodes = list(islice(episode_iter, 100))
second_round_episodes = list(islice(episode_iter, 100))
# both rounds should have same episodes but in different order
assert sorted(first_round_episodes) == sorted(second_round_episodes)
assert first_round_episodes != second_round_episodes
# both rounds should be grouped by scenes
first_round_scene_groups = [
k for k, g in groupby(first_round_episodes, key=lambda x: x.scene_id)
]
second_round_scene_groups = [
k for k, g in groupby(second_round_episodes, key=lambda x: x.scene_id)
]
assert len(first_round_scene_groups) == len(second_round_scene_groups)
assert len(first_round_scene_groups) == len(set(first_round_scene_groups))
def test_iterator_scene_switching():
total_ep = 1000
max_repeat = 25
dataset = _construct_dataset(total_ep)
episode_iter = dataset.get_episode_iterator(max_scene_repeat=max_repeat)
episodes = sorted(dataset.episodes, key=lambda x: x.scene_id)
# episodes before max_repeat reached should be identical
for i in range(max_repeat):
episode = next(episode_iter)
assert episode.episode_id == episodes.pop(0).episode_id
remaining_episodes = list(islice(episode_iter, total_ep - max_repeat))
# remaining episodes should be same but in different order
assert len(remaining_episodes) == len(episodes)
assert remaining_episodes != episodes
assert sorted(remaining_episodes) == sorted(episodes)
# next episodes should still be grouped by scene (before next switching)
assert len(set([e.scene_id for e in remaining_episodes[:max_repeat]])) == 1