forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDiverseStackTest.cpp
268 lines (218 loc) · 7.85 KB
/
DiverseStackTest.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
//===--- DiverseStackTest.cpp ---------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/Basic/DiverseStack.h"
#include "gtest/gtest.h"
#include <random>
using namespace swift;
namespace {
enum class ValueKind {
TwoByte = 0,
ThreeByte = 1,
};
struct ParentType {
uint8_t allocatedSize;
ValueKind kind;
public:
ParentType(uint8_t allocatedSize, ValueKind kind)
: allocatedSize(allocatedSize), kind(kind) {}
unsigned allocated_size() const { return allocatedSize; }
ValueKind getKind() const { return kind; }
};
struct TwoByteType : ParentType {
uint8_t Value;
TwoByteType(uint8_t Value)
: ParentType(sizeof(*this), ValueKind::TwoByte), Value(Value) {}
};
struct ThreeByteType : ParentType {
uint16_t Value;
ThreeByteType(uint16_t Value)
: ParentType(sizeof(*this), ValueKind::ThreeByte), Value(Value) {}
};
struct RandomValueGenerator {
std::mt19937 gen;
std::uniform_int_distribution<int> randomEightBitValueGenerator{
0, std::numeric_limits<uint8_t>::max()};
std::uniform_int_distribution<uint16_t> randomSixteenBitValueGenerator;
// Randomly generated bits. This is frozen to ensure that the test doesn't
// change in between runs.
static constexpr unsigned seed() { return 0xb2f2c1c8; }
RandomValueGenerator()
: gen(seed()), randomEightBitValueGenerator(),
randomSixteenBitValueGenerator() {}
~RandomValueGenerator() = default;
RandomValueGenerator(const RandomValueGenerator &) = delete;
RandomValueGenerator(RandomValueGenerator &&) = delete;
RandomValueGenerator &operator=(const RandomValueGenerator &) = delete;
RandomValueGenerator &operator=(RandomValueGenerator &&) = delete;
void push(DiverseStackImpl<ParentType> &Stack,
std::vector<TwoByteType> &TwoByteVector,
std::vector<ThreeByteType> &ThreeByteVector,
std::vector<ValueKind> &ControlVector) {
uint8_t value = randomEightBitValueGenerator(gen) % 2;
if (value) {
auto Next = TwoByteType(randomEightBitValueGenerator(gen));
Stack.push<TwoByteType>(Next);
ControlVector.emplace_back(ValueKind::TwoByte);
TwoByteVector.push_back(Next);
return;
}
auto Next = ThreeByteType(randomSixteenBitValueGenerator(gen));
Stack.push<ThreeByteType>(Next);
ControlVector.emplace_back(ValueKind::ThreeByte);
ThreeByteVector.push_back(Next);
}
void push(DiverseStackImpl<ParentType> &Stack) {
uint8_t value = randomEightBitValueGenerator(gen) % 2;
if (value) {
auto Next = TwoByteType(randomEightBitValueGenerator(gen));
Stack.push<TwoByteType>(Next);
return;
}
auto Next = ThreeByteType(randomSixteenBitValueGenerator(gen));
Stack.push<ThreeByteType>(Next);
}
};
} // end anonymous namespace
TEST(DiverseStack, MonomorphicPushPop) {
DiverseStack<ParentType, 128> Stack;
EXPECT_TRUE(Stack.empty());
constexpr size_t TwoByteDataSize = 5;
uint8_t InputData[TwoByteDataSize] = {5, 9, 1, 2, 10};
for (unsigned i = 0; i < TwoByteDataSize; ++i) {
Stack.push<TwoByteType>(TwoByteType(InputData[i]));
}
EXPECT_FALSE(Stack.empty());
for (int i = TwoByteDataSize - 1; i >= 0; --i) {
TwoByteType T = reinterpret_cast<TwoByteType &>(Stack.top());
Stack.pop();
EXPECT_EQ(T.Value, InputData[i]);
}
EXPECT_TRUE(Stack.empty());
}
// We test the property here that iterating forward through the stack iterates
// in stack order. This is a bit counter-intuitive for people used to vector
// stacks.
TEST(DiverseStack, Iterate) {
DiverseStack<ParentType, 128> Stack;
constexpr size_t TwoByteDataSize = 5;
uint8_t InputData[TwoByteDataSize] = {5, 9, 1, 2, 10};
for (unsigned i = 0; i < TwoByteDataSize; ++i) {
Stack.push<TwoByteType>(TwoByteType(InputData[i]));
}
const uint8_t *Ptr = &InputData[TwoByteDataSize - 1];
for (auto II = Stack.begin(), IE = Stack.end(); II != IE;) {
TwoByteType T = reinterpret_cast<TwoByteType &>(*II);
EXPECT_EQ(T.Value, *Ptr);
--Ptr;
++II;
}
}
TEST(DiverseStack, PolymorphicPushPop) {
RandomValueGenerator RandomGen;
DiverseStack<ParentType, 128> Stack;
std::vector<TwoByteType> TwoByteVector;
std::vector<ThreeByteType> ThreeByteVector;
std::vector<ValueKind> ControlVector;
EXPECT_TRUE(Stack.empty());
unsigned NumValues = 1024;
for (unsigned i = 0; i < NumValues; ++i) {
RandomGen.push(Stack, TwoByteVector, ThreeByteVector, ControlVector);
}
EXPECT_EQ(ControlVector.size(), NumValues);
EXPECT_GE(ControlVector.size(), TwoByteVector.size());
EXPECT_GE(ControlVector.size(), ThreeByteVector.size());
while (!ControlVector.empty()) {
EXPECT_FALSE(Stack.empty());
ValueKind VectorSwitch = ControlVector.back();
ControlVector.pop_back();
if (VectorSwitch == ValueKind::TwoByte) {
TwoByteType Expected = TwoByteVector.back();
TwoByteVector.pop_back();
TwoByteType Actual = static_cast<TwoByteType &>(Stack.top());
Stack.pop<TwoByteType>();
EXPECT_EQ(Expected.Value, Actual.Value);
continue;
}
assert(VectorSwitch == ValueKind::ThreeByte);
ThreeByteType Expected = ThreeByteVector.back();
ThreeByteVector.pop_back();
ThreeByteType Actual = static_cast<ThreeByteType &>(Stack.top());
EXPECT_EQ(Expected.Value, Actual.Value);
Stack.pop<ThreeByteType>();
}
EXPECT_TRUE(ControlVector.empty());
EXPECT_TRUE(TwoByteVector.empty());
EXPECT_TRUE(ThreeByteVector.empty());
EXPECT_TRUE(Stack.empty());
}
TEST(DiverseStack, StableIndexLookup) {
RandomValueGenerator RandomGen;
DiverseStack<ParentType, sizeof(unsigned) * 4 * 8> Stack;
unsigned FirstStop = 3;
unsigned NumValues = 1024;
for (unsigned i = 0; i < FirstStop; ++i) {
RandomGen.push(Stack);
}
decltype(Stack)::stable_iterator Iter = Stack.stable_begin();
ParentType &Parent = *Stack.find(Iter);
ValueKind SavedKind = Parent.getKind();
unsigned SavedValue;
if (SavedKind == ValueKind::TwoByte) {
SavedValue = static_cast<TwoByteType &>(Parent).Value;
} else {
SavedValue = static_cast<ThreeByteType &>(Parent).Value;
}
for (unsigned i = FirstStop; i < NumValues; ++i) {
RandomGen.push(Stack);
}
Stack.pop();
Stack.pop();
Stack.pop();
Parent = *Stack.find(Iter);
EXPECT_EQ(SavedKind, Parent.getKind());
if (SavedKind == ValueKind::TwoByte) {
EXPECT_EQ(SavedValue, static_cast<TwoByteType &>(Parent).Value);
} else {
EXPECT_EQ(SavedValue, static_cast<ThreeByteType &>(Parent).Value);
}
}
TEST(DiverseStack, PopMany) {
RandomValueGenerator RandomGen;
DiverseStack<ParentType, sizeof(unsigned) * 4 * 8> Stack;
unsigned FirstStop = 3;
unsigned NumValues = 1024;
for (unsigned i = 0; i < FirstStop; ++i) {
RandomGen.push(Stack);
}
decltype(Stack)::stable_iterator Iter = Stack.stable_begin();
ParentType &Parent = *Stack.find(Iter);
ValueKind SavedKind = Parent.getKind();
unsigned SavedValue;
if (SavedKind == ValueKind::TwoByte) {
SavedValue = static_cast<TwoByteType &>(Parent).Value;
} else {
SavedValue = static_cast<ThreeByteType &>(Parent).Value;
}
for (unsigned i = FirstStop; i < NumValues; ++i) {
RandomGen.push(Stack);
}
// Pop until Iter is the top of the stack.
Stack.pop(Iter);
Parent = *Stack.find(Iter);
EXPECT_EQ(SavedKind, Parent.getKind());
if (SavedKind == ValueKind::TwoByte) {
EXPECT_EQ(SavedValue, static_cast<TwoByteType &>(Parent).Value);
} else {
EXPECT_EQ(SavedValue, static_cast<ThreeByteType &>(Parent).Value);
}
EXPECT_EQ(Iter, Stack.stable_begin());
}