-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtfrReader.py
293 lines (235 loc) · 9.65 KB
/
tfrReader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# Copyright 2017 Calico LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# https://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# With modifications made by Foster B. ([email protected]) to load, correctly
# organize, and save data (2019).
#
# =========================================================================
from __future__ import print_function
import glob
import os
import pdb
import sys
from os import listdir
from os.path import isfile, join
from natsort import natsorted
import numpy as np
import tensorflow as tf
# Multiplier for how many items to have in the shuffle buffer, invariant
# of how many files we're parallel-interleaving for our input datasets.
SHUFFLE_BUFFER_DEPTH_PER_FILE = 8
# Number of files to concurrently read from, and interleave,
# for our input datasets.
NUM_FILES_TO_PARALLEL_INTERLEAVE = 4
# Number of cell type predictions to make for each input sequence
TARGET_LENGTH = 4
# TFRecord constants
TFR_INPUT = 'sequence'
TFR_OUTPUT = 'target'
TFR_GENOME = 'genome'
def file_to_records(filename):
return tf.data.TFRecordDataset(filename, compression_type='ZLIB')
class SeqDataset:
def __init__(self, tfr_pattern, batch_size, seq_length,
target_length, mode, seq_end_ignore=0):
"""Initialize basic parameters; run compute_stats; run make_dataset."""
self.tfr_pattern = tfr_pattern
self.num_seqs = None
self.batch_size = batch_size
self.seq_length = seq_length
self.seq_end_ignore = seq_end_ignore
self.seq_depth = None
self.target_length = target_length
self.num_targets = None
self.mode = mode
self.compute_stats()
self.make_dataset()
def batches_per_epoch(self):
return self.num_seqs // self.batch_size
def generate_parser(self, raw=False):
def parse_proto(example_protos):
"""Parse TFRecord protobuf."""
# features = {
# TFR_GENOME: tf.io.FixedLenFeature([1], tf.int64),
# TFR_INPUT: tf.io.FixedLenFeature([], tf.string),
# TFR_OUTPUT: tf.io.FixedLenFeature([], tf.string)
# }
features = {
TFR_INPUT: tf.io.FixedLenFeature([], tf.string),
TFR_OUTPUT: tf.io.FixedLenFeature([], tf.string)
}
parsed_features = tf.io.parse_single_example(example_protos, features=features)
# genome = parsed_features[TFR_GENOME]
sequence = tf.io.decode_raw(parsed_features[TFR_INPUT], tf.uint8)
if not raw:
sequence = tf.reshape(sequence, [self.seq_length, self.seq_depth])
sequence = tf.cast(sequence, tf.float32)
targets = tf.io.decode_raw(parsed_features[TFR_OUTPUT], tf.float16)
if not raw:
targets = tf.reshape(targets, [self.target_length, self.num_targets])
if self.seq_end_ignore > 0:
target_pool = self.seq_length // self.target_length
slice_left = self.seq_end_ignore // target_pool
slice_right = self.target_length - slice_left
targets = targets[slice_left:slice_right, :]
targets = tf.cast(targets, tf.float32)
# return (sequence, genome), targets
return sequence, targets
return parse_proto
def make_dataset(self):
"""Make Dataset w/ transformations."""
# initialize dataset from TFRecords glob
tfr_files = natsorted(glob.glob(self.tfr_pattern))
if tfr_files:
dataset = tf.data.Dataset.list_files(tf.constant(tfr_files), shuffle=False)
else:
print('Cannot order TFRecords %s' % self.tfr_pattern, file=sys.stderr)
dataset = tf.data.Dataset.list_files(self.tfr_pattern)
# train
if self.mode == tf.estimator.ModeKeys.TRAIN:
# repeat
dataset = dataset.repeat()
# interleave files
dataset = dataset.interleave(
map_func=file_to_records,
cycle_length=NUM_FILES_TO_PARALLEL_INTERLEAVE,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
# shuffle
shuffle_buffer_size = NUM_FILES_TO_PARALLEL_INTERLEAVE * SHUFFLE_BUFFER_DEPTH_PER_FILE
dataset = dataset.shuffle(buffer_size=shuffle_buffer_size)
# valid/test
else:
# flat mix files
dataset = dataset.flat_map(file_to_records)
# helper for training on single genomes in a multiple genome mode
if self.num_seqs > 0:
dataset = dataset.map(self.generate_parser())
# batch
dataset = dataset.batch(self.batch_size)
# hold on
self.dataset = dataset
def compute_stats(self):
""" Iterate over the TFRecords to count sequences, and infer
seq_depth and num_targets."""
with tf.name_scope('stats'):
# read TF Records
dataset = tf.data.Dataset.list_files(self.tfr_pattern)
dataset = dataset.flat_map(file_to_records)
dataset = dataset.map(self.generate_parser(raw=True))
dataset = dataset.batch(1)
self.num_seqs = 0
# for (seq_raw, genome), targets_raw in dataset:
for seq_raw, targets_raw in dataset:
# infer seq_depth
seq_1hot = seq_raw.numpy().reshape((self.seq_length,-1))
if self.seq_depth is None:
self.seq_depth = seq_1hot.shape[-1]
else:
assert(self.seq_depth == seq_1hot.shape[-1])
# infer num_targets
targets1 = targets_raw.numpy().reshape(self.target_length,-1)
if self.num_targets is None:
self.num_targets = targets1.shape[-1]
targets_nonzero = (targets1.sum(axis=0, dtype='float32') > 0)
else:
assert(self.num_targets == targets1.shape[-1])
targets_nonzero = np.logical_or(targets_nonzero, targets1.sum(axis=0, dtype='float32') > 0)
# count sequences
self.num_seqs += 1
# warn user about nonzero targets
if self.num_seqs > 0:
self.num_targets_nonzero = (targets_nonzero > 0).sum()
print('%s has %d sequences with %d/%d targets' % (self.tfr_pattern, self.num_seqs, self.num_targets_nonzero, self.num_targets), flush=True)
else:
self.num_targets_nonzero = None
print('%s has %d sequences with 0 targets' % (self.tfr_pattern, self.num_seqs), flush=True)
def numpy(self, return_inputs=True, return_outputs=True):
""" Convert TFR inputs and/or outputs to numpy arrays."""
with tf.name_scope('numpy'):
# initialize dataset from TFRecords glob
tfr_files = natsorted(glob.glob(self.tfr_pattern))
if tfr_files:
dataset = tf.data.Dataset.list_files(tf.constant(tfr_files), shuffle=False)
else:
print('Cannot order TFRecords %s' % self.tfr_pattern, file=sys.stderr)
dataset = tf.data.Dataset.list_files(self.tfr_pattern)
# read TF Records
dataset = dataset.flat_map(file_to_records)
dataset = dataset.map(self.generate_parser(raw=True))
dataset = dataset.batch(1)
# initialize inputs and outputs
seqs_1hot = []
targets = []
# collect inputs and outputs
for seq_raw, targets_raw in dataset:
if return_inputs:
seq_1hot = seq_raw.numpy().reshape((self.seq_length,-1))
seqs_1hot.append(seq_1hot)
if return_outputs:
targets1 = targets_raw.numpy().reshape((self.target_length,-1))
targets.append(targets1)
# make arrays
seqs_1hot = np.array(seqs_1hot)
targets = np.array(targets)
# return
if return_inputs and return_outputs:
return seqs_1hot, targets
elif return_inputs:
return seqs_1hot
else:
return targets
#Download all data in the whatever folder you have downloaded the tfr files in
trainInput = []
trainOutput = []
validInput = []
validOutput = []
testInput = []
testOutput = []
batch_size = 100 #Change according to desire
seq_length = 1000 #Change according to desire, but 1000 (or 4) creates nice one-hot encoding of info
wantInput = True #Change according to desire
wantOutput = True #Change according to desire
allFiles = [f for f in listdir("data") if isfile(join("data",f))]
for file in allFiles:
file = "data" + os.sep + file
if "train" in file:
inputData = SeqDataset(file,batch_size,seq_length,TARGET_LENGTH,"train")
if wantInput:
trainInput.append(inputData.numpy(True, False))
if wantOutput:
trainOutput.append(inputData.numpy(False, True))
elif "valid" in file:
inputData = SeqDataset(file,batch_size,seq_length,TARGET_LENGTH,"valid")
if wantInput:
validInput.append(inputData.numpy(True, False))
if wantOutput:
validOutput.append(inputData.numpy(False, True))
elif "test" in file:
inputData = SeqDataset(file,batch_size,seq_length,TARGET_LENGTH,"test")
if wantInput:
inputD = inputData.numpy(False, True)
print(inputD.shape)
print(inputD)
testInput.append(inputData.numpy(True, False))
if wantOutput:
testOutput.append(inputData.numpy(False, True))
trainInput = np.asarray(trainInput)
trainOutput = np.asarray(trainOutput)
validInput = np.asarray(validInput)
validOutput = np.asarray(validOutput)
testInput = np.asarray(testInput)
testOutput = np.asarray(testOutput)
np.save("trainInput",trainInput)
np.save("trainOutput",trainOutput)
np.save("validInput",validInput)
np.save("validOutput",validOutput)
np.save("testInput",testInput)
np.save("testOutput",testOutput)