-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathframework-frontend.cpp
231 lines (189 loc) · 9.03 KB
/
framework-frontend.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/*
* sfs-framework
*
* Nils Hamel - [email protected]
* Charles Papon - [email protected]
* Copyright (c) 2019-2020 DHLAB, EPFL & HES-SO Valais-Wallis
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "framework-frontend.hpp"
FrontendPicture::FrontendPicture(Source * source, cv::Mat mask, Database *database, float const threshold) :
source(source),
mask(mask),
database(database),
sparseThreshold(threshold)
{ }
bool FrontendPicture::next() {
std::shared_ptr<Viewpoint> newViewpoint;
bool hasViewpoint(false);
std::vector<cv::DMatch> lastViewpointMatches;
// Search source image
while (hasViewpoint==false) {
// Check image list exhaust
if(source->hasNext()==false){
return false;
}
// Create viewpoint from source
newViewpoint = source->next();
// Assign viewpoint index
newViewpoint->setIndex(database->viewpoints.size());
// Compute image features and descriptors
utilesAKAZEFeatures(newViewpoint->getImage(), &mask, newViewpoint->getCvFeatures(), newViewpoint->getCvDescriptor(), sparseThreshold);
// Release viewpoint image
newViewpoint->releaseImage();
//Check if the image is moving enough using features
if(lastViewpoint){
utilesGMSMatcher(
newViewpoint->getCvFeatures(),
newViewpoint->getCvDescriptor(),
newViewpoint->getImage()->size(),
lastViewpoint->getCvFeatures(),
lastViewpoint->getCvDescriptor(),
lastViewpoint->getImage()->size(),
&lastViewpointMatches
);
double score = utilesDetectMotion(
newViewpoint->getCvFeatures(),
lastViewpoint->getCvFeatures(),
&lastViewpointMatches,
lastViewpoint->getImage()->size()
);
if(score >= 0.002){ // Old value : 0.0005, 0.002
hasViewpoint=true;
}
}else{
hasViewpoint=true;
}
}
newViewpoint->allocateFeaturesFromCvFeatures();
//Extrapolate the position of the newViewpoint
newViewpoint->resetFrame();
//Get local viewpoints
std::vector<std::shared_ptr<Viewpoint>> localViewpoints;
database->getLocalViewpoints(newViewpoint->position, &localViewpoints);
uint32_t localViewpointsCount = localViewpoints.size();
uint32_t newViewpointFeaturesCount = newViewpoint->getCvFeatures()->size();
//Match local viewpoints to the new image
//profile("gms + correlations");
uint32_t *correlations = new uint32_t[newViewpointFeaturesCount*localViewpointsCount]; //-1 => empty
memset(correlations, -1, newViewpointFeaturesCount*localViewpointsCount*sizeof(uint32_t));
// #pragma omp parallel for
for(uint32_t localViewpointIdx = 0; localViewpointIdx < localViewpointsCount; localViewpointIdx++){
auto localViewpoint = localViewpoints[localViewpointIdx];
if(localViewpoint == lastViewpoint){ //Reuse previously processed matches
for(auto match : lastViewpointMatches){
correlations[localViewpointIdx + match.queryIdx*localViewpointsCount] = match.trainIdx;
}
} else {
std::vector<cv::DMatch> matches;
utilesGMSMatcher(
newViewpoint->getCvFeatures(),
newViewpoint->getCvDescriptor(),
newViewpoint->getImage()->size(),
localViewpoint->getCvFeatures(),
localViewpoint->getCvDescriptor(),
localViewpoint->getImage()->size(),
&matches
);
for(auto match : matches){
correlations[localViewpointIdx + match.queryIdx*localViewpointsCount] = match.trainIdx;
}
}
}
//Integrate the new image features into the structure
database->aggregate(&localViewpoints, newViewpoint.get(), correlations);
delete[] correlations;
lastViewpoint = newViewpoint;
database->addViewpoint(newViewpoint);
return true;
}
FrontendDense::FrontendDense(Source * source, cv::Mat mask,Database *database, std::string ofCacheFolder) :
source(source),
mask(mask),
database(database),
ofCacheFolder(ofCacheFolder)
{ }
bool FrontendDense::next() {
if(!source->hasNext()) return false;
auto newViewpoint = source->next();
const int margin = 4;
if(database->viewpoints.size() != 0){
auto lastViewpoint = database->viewpoints.back();
cv::Mat u,v;
auto imageLast = cv::Mat();
lastViewpoint->image.convertTo( imageLast, CV_64FC3 );
imageLast /= 255.0;
auto imageNew = cv::Mat();
newViewpoint->image.convertTo( imageNew, CV_64FC3 );
imageNew /= 255.0;
ofCache(imageLast, imageNew, u, v, ofCacheFolder); //TODO waning, last viewpoint may not have image
cv::Mat stencil = cv::Mat::zeros(lastViewpoint->image.rows, lastViewpoint->image.cols, CV_8UC1);
//Extend existing structures with lastViewpoint matches
for(auto lastFeature: lastViewpoint->features) if(lastFeature->structure) {
//TODO use bilinear_sample
auto newPosition = lastFeature->position + Eigen::Vector2f(
u.at<float>(lastFeature->position.y(), lastFeature->position.x()),
v.at<float>(lastFeature->position.y(), lastFeature->position.x())
);
// auto newPosition = lastFeature->position + Eigen::Vector2f(
// bilinear_sample((double*)u.data, lastFeature->position.x(), lastFeature->position.y(), lastViewpoint->image.cols),
// bilinear_sample((double*)v.data, lastFeature->position.x(), lastFeature->position.y(), lastViewpoint->image.cols)
// );
if(newPosition.x() < margin || newPosition.y() < margin || newPosition.x() >= newViewpoint->image.cols -margin || newPosition.y() >= newViewpoint->image.rows -margin) continue;
if(!mask.at<uint8_t>(newPosition.y(), newPosition.x())) continue;
auto newFeature = new Feature();
newFeature->setFeature(newPosition.x(), newPosition.y(), newViewpoint->image.cols, newViewpoint->image.rows);
newFeature->setViewpointPtr(newViewpoint.get());
newFeature->setColor(newViewpoint->image.empty() ? cv::Vec3b(255,255,255) : newViewpoint->image.at<cv::Vec3b>(newPosition.y(), newPosition.x()));
newViewpoint->addFeature(newFeature);
lastFeature->structure->addFeature(newFeature);
stencil.at<uint8_t>(lastFeature->position.y(), lastFeature->position.x()) = 255;
// cv::circle(stencil, cv::Point(lastFeature->position.x(), lastFeature->position.y()), 2, cv::Scalar(255,255,255),1,cv::FILLED,0);
}
// cv::namedWindow( "stencil", cv::WINDOW_KEEPRATIO );
// imshow( "stencil", stencil);
// cv::waitKey(0);
//Create new structure for empty area
for(int y = margin;y < stencil.rows-margin;y++){
for(int x = margin;x < stencil.cols-margin;x++){
if(!stencil.at<uint8_t>(y, x)){
auto newPosition = Eigen::Vector2f(
x + u.at<float>(y, x),
y + v.at<float>(y, x)
);
if(newPosition.x() < margin || newPosition.y() < margin || newPosition.x() >= newViewpoint->image.cols -margin || newPosition.y() >= newViewpoint->image.rows -margin) continue;
if(!mask.at<uint8_t>(y, x)) continue;
if(!mask.at<uint8_t>(newPosition.y(), newPosition.x())) continue;
auto newStructure = database->addStructure();
auto lastFeature = new Feature();
lastFeature->setFeature(x, y, lastViewpoint->image.cols, lastViewpoint->image.rows);
lastFeature->setViewpointPtr(lastViewpoint.get());
lastFeature->setColor(lastViewpoint->image.empty() ? cv::Vec3b(255,255,255) : lastViewpoint->image.at<cv::Vec3b>(y, x));
lastViewpoint->addFeature(lastFeature);
newStructure->addFeature(lastFeature);
auto newFeature = new Feature();
newFeature->setFeature(newPosition.x(), newPosition.y(), newViewpoint->image.cols, newViewpoint->image.rows);
newFeature->setViewpointPtr(newViewpoint.get());
newFeature->setColor(newViewpoint->image.empty() ? cv::Vec3b(255,255,255) : newViewpoint->image.at<cv::Vec3b>(newPosition.y(), newPosition.x()));
newViewpoint->addFeature(newFeature);
newStructure->addFeature(newFeature);
}
}
}
}
newViewpoint->setIndex(database->viewpoints.size());
database->addViewpoint(newViewpoint);
return true;
}