forked from szad670401/HyperLPR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipline.py
246 lines (192 loc) · 7.4 KB
/
pipline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
#coding=utf-8
from . import detect
from . import finemapping as fm
from . import segmentation
import cv2
import time
import numpy as np
from PIL import ImageFont
from PIL import Image
from PIL import ImageDraw
import json
import sys
from . import typeDistinguish as td
import imp
imp.reload(sys)
fontC = ImageFont.truetype("./Font/platech.ttf", 14, 0);
from . import e2e
#寻找车牌左右边界
def find_edge(image):
sum_i = image.sum(axis=0)
sum_i = sum_i.astype(np.float)
sum_i/=image.shape[0]*255
# print sum_i
start= 0 ;
end = image.shape[1]-1
for i,one in enumerate(sum_i):
if one>0.4:
start = i;
if start-3<0:
start = 0
else:
start -=3
break;
for i,one in enumerate(sum_i[::-1]):
if one>0.4:
end = end - i;
if end+4>image.shape[1]-1:
end = image.shape[1]-1
else:
end+=4
break
return start,end
#垂直边缘检测
def verticalEdgeDetection(image):
image_sobel = cv2.Sobel(image.copy(),cv2.CV_8U,1,0)
# image = auto_canny(image_sobel)
# img_sobel, CV_8U, 1, 0, 3, 1, 0, BORDER_DEFAULT
# canny_image = auto_canny(image)
flag,thres = cv2.threshold(image_sobel,0,255,cv2.THRESH_OTSU|cv2.THRESH_BINARY)
print(flag)
flag,thres = cv2.threshold(image_sobel,int(flag*0.7),255,cv2.THRESH_BINARY)
# thres = simpleThres(image_sobel)
kernal = np.ones(shape=(3,15))
thres = cv2.morphologyEx(thres,cv2.MORPH_CLOSE,kernal)
return thres
#确定粗略的左右边界
def horizontalSegmentation(image):
thres = verticalEdgeDetection(image)
# thres = thres*image
head,tail = find_edge(thres)
# print head,tail
# cv2.imshow("edge",thres)
tail = tail+5
if tail>135:
tail = 135
image = image[0:35,head:tail]
image = cv2.resize(image, (int(136), int(36)))
return image
#打上boundingbox和标签
def drawRectBox(image,rect,addText):
cv2.rectangle(image, (int(rect[0]), int(rect[1])), (int(rect[0] + rect[2]), int(rect[1] + rect[3])), (0,0, 255), 2, cv2.LINE_AA)
cv2.rectangle(image, (int(rect[0]-1), int(rect[1])-16), (int(rect[0] + 115), int(rect[1])), (0, 0, 255), -1, cv2.LINE_AA)
img = Image.fromarray(image)
draw = ImageDraw.Draw(img)
#draw.text((int(rect[0]+1), int(rect[1]-16)), addText.decode("utf-8"), (255, 255, 255), font=fontC)
draw.text((int(rect[0]+1), int(rect[1]-16)), addText, (255, 255, 255), font=fontC)
imagex = np.array(img)
return imagex
from . import cache
from . import finemapping_vertical as fv
def RecognizePlateJson(image):
images = detect.detectPlateRough(image,image.shape[0],top_bottom_padding_rate=0.1)
jsons = []
for j,plate in enumerate(images):
plate,rect,origin_plate =plate
res, confidence = e2e.recognizeOne(origin_plate)
print("res",res)
cv2.imwrite("./"+str(j)+"_rough.jpg",plate)
# print "车牌类型:",ptype
# plate = cv2.cvtColor(plate, cv2.COLOR_RGB2GRAY)
plate =cv2.resize(plate,(136,int(36*2.5)))
t1 = time.time()
ptype = td.SimplePredict(plate)
if ptype>0 and ptype<4:
plate = cv2.bitwise_not(plate)
# demo = verticalEdgeDetection(plate)
image_rgb = fm.findContoursAndDrawBoundingBox(plate)
image_rgb = fv.finemappingVertical(image_rgb)
cache.verticalMappingToFolder(image_rgb)
# print time.time() - t1,"校正"
print("e2e:",e2e.recognizeOne(image_rgb)[0])
image_gray = cv2.cvtColor(image_rgb,cv2.COLOR_BGR2GRAY)
cv2.imwrite("./"+str(j)+".jpg",image_gray)
# image_gray = horizontalSegmentation(image_gray)
t2 = time.time()
res, confidence = e2e.recognizeOne(image_rgb)
res_json = {}
if confidence > 0.6:
res_json["Name"] = res
res_json["Type"] = td.plateType[ptype]
res_json["Confidence"] = confidence;
res_json["x"] = int(rect[0])
res_json["y"] = int(rect[1])
res_json["w"] = int(rect[2])
res_json["h"] = int(rect[3])
jsons.append(res_json)
print(json.dumps(jsons,ensure_ascii=False))
return json.dumps(jsons,ensure_ascii=False)
def SimpleRecognizePlateByE2E(image):
t0 = time.time()
images = detect.detectPlateRough(image,image.shape[0],top_bottom_padding_rate=0.1)
res_set = []
for j,plate in enumerate(images):
plate, rect, origin_plate =plate
# plate = cv2.cvtColor(plate, cv2.COLOR_RGB2GRAY)
plate =cv2.resize(plate,(136,36*2))
res,confidence = e2e.recognizeOne(origin_plate)
print("res",res)
t1 = time.time()
ptype = td.SimplePredict(plate)
if ptype>0 and ptype<5:
# pass
plate = cv2.bitwise_not(plate)
image_rgb = fm.findContoursAndDrawBoundingBox(plate)
image_rgb = fv.finemappingVertical(image_rgb)
image_rgb = fv.finemappingVertical(image_rgb)
cache.verticalMappingToFolder(image_rgb)
#cv2.imwrite("./"+str(j)+".jpg",image_rgb)
res,confidence = e2e.recognizeOne(image_rgb)
print(res,confidence)
res_set.append([[],res,confidence])
if confidence>0.7:
image = drawRectBox(image, rect, res+" "+str(round(confidence,3)))
return image,res_set
def SimpleRecognizePlate(image):
t0 = time.time()
images = detect.detectPlateRough(image,image.shape[0],top_bottom_padding_rate=0.1)
res_set = []
for j,plate in enumerate(images):
plate, rect, origin_plate =plate
# plate = cv2.cvtColor(plate, cv2.COLOR_RGB2GRAY)
plate =cv2.resize(plate,(136,36*2))
t1 = time.time()
ptype = td.SimplePredict(plate)
if ptype>0 and ptype<5:
plate = cv2.bitwise_not(plate)
image_rgb = fm.findContoursAndDrawBoundingBox(plate)
image_rgb = fv.finemappingVertical(image_rgb)
cache.verticalMappingToFolder(image_rgb)
print("e2e:", e2e.recognizeOne(image_rgb))
image_gray = cv2.cvtColor(image_rgb,cv2.COLOR_RGB2GRAY)
# image_gray = horizontalSegmentation(image_gray)
cv2.imshow("image_gray",image_gray)
# cv2.waitKey()
cv2.imwrite("./"+str(j)+".jpg",image_gray)
# cv2.imshow("image",image_gray)
# cv2.waitKey(0)
print("校正",time.time() - t1,"s")
# cv2.imshow("image,",image_gray)
# cv2.waitKey(0)
t2 = time.time()
val = segmentation.slidingWindowsEval(image_gray)
# print val
print("分割和识别",time.time() - t2,"s")
if len(val)==3:
blocks, res, confidence = val
if confidence/7>0.7:
image = drawRectBox(image,rect,res)
res_set.append(res)
for i,block in enumerate(blocks):
block_ = cv2.resize(block,(25,25))
block_ = cv2.cvtColor(block_,cv2.COLOR_GRAY2BGR)
image[j * 25:(j * 25) + 25, i * 25:(i * 25) + 25] = block_
if image[j*25:(j*25)+25,i*25:(i*25)+25].shape == block_.shape:
pass
if confidence>0:
print("车牌:",res,"置信度:",confidence/7)
else:
pass
# print "不确定的车牌:", res, "置信度:", confidence
print(time.time() - t0,"s")
return image,res_set