forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
309 lines (263 loc) · 10.9 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Simple check list from AllenNLP repo: https://github.com/allenai/allennlp/blob/master/setup.py
To create the package for pypi.
1. Run `make pre-release` (or `make pre-patch` for a patch release) then run `make fix-copies` to fix the index of the
documentation.
2. Unpin specific versions from setup.py that use a git install.
3. Commit these changes with the message: "Release: VERSION"
4. Add a tag in git to mark the release: "git tag VERSION -m 'Adds tag VERSION for pypi' "
Push the tag to git: git push --tags origin master
5. Build both the sources and the wheel. Do not change anything in setup.py between
creating the wheel and the source distribution (obviously).
For the wheel, run: "python setup.py bdist_wheel" in the top level directory.
(this will build a wheel for the python version you use to build it).
For the sources, run: "python setup.py sdist"
You should now have a /dist directory with both .whl and .tar.gz source versions.
6. Check that everything looks correct by uploading the package to the pypi test server:
twine upload dist/* -r pypitest
(pypi suggest using twine as other methods upload files via plaintext.)
You may have to specify the repository url, use the following command then:
twine upload dist/* -r pypitest --repository-url=https://test.pypi.org/legacy/
Check that you can install it in a virtualenv by running:
pip install -i https://testpypi.python.org/pypi transformers
7. Upload the final version to actual pypi:
twine upload dist/* -r pypi
8. Copy the release notes from RELEASE.md to the tag in github once everything is looking hunky-dory.
9. Run `make post-release` (or `make post-patch` for a patch release).
"""
import os
import re
import shutil
from distutils.core import Command
from pathlib import Path
from setuptools import find_packages, setup
# Remove stale transformers.egg-info directory to avoid https://github.com/pypa/pip/issues/5466
stale_egg_info = Path(__file__).parent / "transformers.egg-info"
if stale_egg_info.exists():
print(
(
"Warning: {} exists.\n\n"
"If you recently updated transformers to 3.0 or later, this is expected,\n"
"but it may prevent transformers from installing in editable mode.\n\n"
"This directory is automatically generated by Python's packaging tools.\n"
"I will remove it now.\n\n"
"See https://github.com/pypa/pip/issues/5466 for details.\n"
).format(stale_egg_info)
)
shutil.rmtree(stale_egg_info)
# IMPORTANT:
# 1. all dependencies should be listed here with their version requirements if any
# 2. once modified, run: `make deps_table_update` to update src/transformers/dependency_versions_table.py
_deps = [
"black>=20.8b1",
"cookiecutter==1.7.2",
"dataclasses",
"datasets",
"faiss-cpu",
"fastapi",
"filelock",
"flake8>=3.8.3",
"flax>=0.3.2",
"fugashi>=1.0",
"importlib_metadata",
"ipadic>=1.0.0,<2.0",
"isort>=5.5.4",
"jax>=0.2.8",
"jaxlib>=0.1.59",
"keras2onnx",
"numpy>=1.17",
"onnxconverter-common",
"onnxruntime-tools>=1.4.2",
"onnxruntime>=1.4.0",
"packaging",
"parameterized",
"protobuf",
"psutil",
"pydantic",
"pytest",
"pytest-sugar",
"pytest-xdist",
"python>=3.6.0",
"recommonmark",
"regex!=2019.12.17",
"requests",
"sacremoses",
"scikit-learn",
"sentencepiece==0.1.91",
"soundfile",
"sphinx-copybutton",
"sphinx-markdown-tables",
"sphinx-rtd-theme==0.4.3", # sphinx-rtd-theme==0.5.0 introduced big changes in the style.
"sphinx==3.2.1",
"starlette",
"tensorflow-cpu>=2.3",
"tensorflow>=2.3",
"timeout-decorator",
"tokenizers>=0.10.1,<0.11",
"torch>=1.0",
"torchaudio",
"tqdm>=4.27",
"unidic>=1.0.2",
"unidic_lite>=1.0.7",
"uvicorn",
]
# this is a lookup table with items like:
#
# tokenizers: "tokenizers==0.9.4"
# packaging: "packaging"
#
# some of the values are versioned whereas others aren't.
deps = {b: a for a, b in (re.findall(r"^(([^!=<>]+)(?:[!=<>].*)?$)", x)[0] for x in _deps)}
# since we save this data in src/transformers/dependency_versions_table.py it can be easily accessed from
# anywhere. If you need to quickly access the data from this table in a shell, you can do so easily with:
#
# python -c 'import sys; from transformers.dependency_versions_table import deps; \
# print(" ".join([ deps[x] for x in sys.argv[1:]]))' tokenizers datasets
#
# Just pass the desired package names to that script as it's shown with 2 packages above.
#
# If transformers is not yet installed and the work is done from the cloned repo remember to add `PYTHONPATH=src` to the script above
#
# You can then feed this for example to `pip`:
#
# pip install -U $(python -c 'import sys; from transformers.dependency_versions_table import deps; \
# print(" ".join([ deps[x] for x in sys.argv[1:]]))' tokenizers datasets)
#
def deps_list(*pkgs):
return [deps[pkg] for pkg in pkgs]
class DepsTableUpdateCommand(Command):
"""
A custom distutils command that updates the dependency table.
usage: python setup.py deps_table_update
"""
description = "build runtime dependency table"
user_options = [
# format: (long option, short option, description).
("dep-table-update", None, "updates src/transformers/dependency_versions_table.py"),
]
def initialize_options(self):
pass
def finalize_options(self):
pass
def run(self):
entries = "\n".join([f' "{k}": "{v}",' for k, v in deps.items()])
content = [
"# THIS FILE HAS BEEN AUTOGENERATED. To update:",
"# 1. modify the `_deps` dict in setup.py",
"# 2. run `make deps_table_update``",
"deps = {",
entries,
"}",
"",
]
target = "src/transformers/dependency_versions_table.py"
print(f"updating {target}")
with open(target, "w", encoding="utf-8", newline="\n") as f:
f.write("\n".join(content))
extras = {}
extras["ja"] = deps_list("fugashi", "ipadic", "unidic_lite", "unidic")
extras["sklearn"] = deps_list("scikit-learn")
extras["tf"] = deps_list("tensorflow", "onnxconverter-common", "keras2onnx")
extras["tf-cpu"] = deps_list("tensorflow-cpu", "onnxconverter-common", "keras2onnx")
extras["torch"] = deps_list("torch")
if os.name == "nt": # windows
extras["retrieval"] = deps_list("datasets") # faiss is not supported on windows
extras["flax"] = [] # jax is not supported on windows
else:
extras["retrieval"] = deps_list("faiss-cpu", "datasets")
extras["flax"] = deps_list("jax", "jaxlib", "flax")
extras["tokenizers"] = deps_list("tokenizers")
extras["onnxruntime"] = deps_list("onnxruntime", "onnxruntime-tools")
extras["onnx"] = deps_list("onnxconverter-common", "keras2onnx") + extras["onnxruntime"]
extras["modelcreation"] = deps_list("cookiecutter")
extras["serving"] = deps_list("pydantic", "uvicorn", "fastapi", "starlette")
extras["speech"] = deps_list("soundfile", "torchaudio")
extras["sentencepiece"] = deps_list("sentencepiece", "protobuf")
extras["testing"] = (
deps_list("pytest", "pytest-xdist", "timeout-decorator", "parameterized", "psutil", "datasets", "pytest-sugar", "black")
+ extras["retrieval"]
+ extras["modelcreation"]
)
extras["docs"] = deps_list("recommonmark", "sphinx", "sphinx-markdown-tables", "sphinx-rtd-theme", "sphinx-copybutton")
extras["quality"] = deps_list("black", "isort", "flake8")
extras["all"] = extras["tf"] + extras["torch"] + extras["flax"] + extras["sentencepiece"] + extras["tokenizers"]
extras["dev"] = (
extras["all"]
+ extras["testing"]
+ extras["quality"]
+ extras["ja"]
+ extras["docs"]
+ extras["sklearn"]
+ extras["modelcreation"]
)
extras["torchhub"] = deps_list(
"filelock",
"importlib_metadata",
"numpy",
"packaging",
"protobuf",
"regex",
"requests",
"sacremoses",
"sentencepiece",
"torch",
"tokenizers",
"tqdm",
)
# when modifying the following list, make sure to update src/transformers/dependency_versions_check.py
install_requires = [
deps["dataclasses"] + ";python_version<'3.7'", # dataclasses for Python versions that don't have it
deps["importlib_metadata"] + ";python_version<'3.8'", # importlib_metadata for Python versions that don't have it
deps["filelock"], # filesystem locks, e.g., to prevent parallel downloads
deps["numpy"],
deps["packaging"], # utilities from PyPA to e.g., compare versions
deps["regex"], # for OpenAI GPT
deps["requests"], # for downloading models over HTTPS
deps["sacremoses"], # for XLM
deps["tokenizers"],
deps["tqdm"], # progress bars in model download and training scripts
]
setup(
name="transformers",
version="4.5.0.dev0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
author="Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Sam Shleifer, Patrick von Platen, Sylvain Gugger, Google AI Language Team Authors, Open AI team Authors, Facebook AI Authors, Carnegie Mellon University Authors",
author_email="[email protected]",
description="State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch",
long_description=open("README.md", "r", encoding="utf-8").read(),
long_description_content_type="text/markdown",
keywords="NLP deep learning transformer pytorch tensorflow BERT GPT GPT-2 google openai CMU",
license="Apache",
url="https://github.com/huggingface/transformers",
package_dir={"": "src"},
packages=find_packages("src"),
extras_require=extras,
entry_points={"console_scripts": ["transformers-cli=transformers.commands.transformers_cli:main"]},
python_requires=">=3.6.0",
install_requires=install_requires,
classifiers=[
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: Apache Software License",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
cmdclass={"deps_table_update": DepsTableUpdateCommand},
)