-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplotter.py
470 lines (383 loc) · 19.4 KB
/
plotter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
# plotter.py: class handling the plots
# Copyright(C) 2018-2020 Romain Serra
# This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
# License as published by the Software Foundation, either version 3 of the License, or any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
# warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with this program.
# If not, see < https://www.gnu.org/licenses/>.
import numpy as np
from numpy import linalg
import utils
import dynamical_system
import body_prob_dyn
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import integrators
import math
import indirect_num
from config import conf
plt.rcParams.update({"font.size": conf.params_plot["font"]})
class Plotter:
"""Class dealing with the plotting capacities.
Attributes:
dyn (dynamical_system.DynamicalSystem): dynamics to be used for two-boundary value problem.
BC (utils.BoundaryConditions): constraints for two-point boundary value problem.
p (int): type of norm for control law to be plotted.
anomaly (bool): set to True if independent variable is the true anomaly and to False if it is time.
linearized (bool): set to True to plot linearized dynamics, False otherwise
analytical (bool): set to True to propagate the state vector analytically if possible, False otherwise
CL (utils.ControlLaw): control law to be simulated.
_q (int): type of norm for primer vector.
_nb (int): number of points to be plotted.
_nus (np.array): anomalies to be plotted.
_times (np.array): instants to be plotted.
_pts (np.array): values of independent variable to be plotted (depending on boolean "anomaly")
_states (np.array): states to be plotted.
"""
def __init__(self, dyn, BC, p, anomaly, linearized, analytical, CL=None):
"""Constructor for class plotter.
Args:
dyn (dynamical_system.DynamicalSystem): dynamics to be used for two-boundary value problem.
BC (utils.BoundaryConditions): constraints for two-point boundary value problem.
p (int): type of norm for control law to be plotted.
anomaly (bool): set to True if independent variable is the true anomaly and to False if it is time.
linearized (bool): set to True to plot linearized dynamics, False otherwise
analytical (bool): set to True to propagate the state vector analytically if possible, False otherwise
CL (utils.ControlLaw): control law to be simulated.
"""
self.p = p
self._q = indirect_num.dual_to_primal_norm_type(p)
self.dyn = dyn.copy()
self.BC = BC.copy()
if CL is None:
self.CL = utils.NoControl(BC)
self.linearized = linearized
self.anomaly = anomaly
self.analytical = analytical
if isinstance(dyn, body_prob_dyn.BodyProbDyn):
# propagation has to be numerical for elliptical out-of-plane L1, 2 or 3 or elliptical in-plane of any LP
if analytical and dyn.params.mu != 0. and dyn.params.ecc != 0. and \
(dyn.params.Li in [1, 2, 3] or BC.half_dim > 1):
print("WARNING: propagation type within plotter changed to numerical")
self.analytical = False
self._nb = conf.params_plot["mesh_plot"]
self._nus = None
self._times = None
self._pts = None
self._compute_points()
self._states = None
def copy(self):
"""Function returning a copy of the object.
Returns:
(Plotter): copied object.
"""
return Plotter(self.dyn, self.BC, self.p, self.anomaly, self.linearized, self.analytical, self.CL)
def _compute_points(self):
"""Function generating subsequent values of independent variables used in history of state vector.
"""
if self.anomaly:
self._nus = np.linspace(self.BC.nu0, self.BC.nuf, self._nb)
self._pts = np.array(self._nus)
else: # the independent variable is time
self._times = np.linspace(0., self.dyn.convToAlterIndVar(self.BC.nu0, 0., self.BC.nuf), self._nb)
self._pts = np.array(self._times)
self._nus = np.array([self.dyn.convFromAlterIndVar(self.BC.nu0, 0., time) for time in self._times])
steps = self._nus[1:] - self._nus[:-1]
if np.min(steps) * np.max(steps) < 0.:
raise ValueError("There was a problem when converting the independent variable (it is not monotonous).")
def set_ind_var(self, anomaly):
"""Setter for attribute anomaly.
Args:
anomaly (bool): set to True if independent variable is the true anomaly and to False if it is time.
"""
self.anomaly = anomaly
self._compute_points()
def set_linearity(self, linearized):
"""Setter for attribute linearized.
Args:
linearized (bool): set to True to plot linearized dynamics, False otherwise
"""
if linearized != self.linearized:
self.linearized = linearized
self._states = None
def set_norm(self, p):
"""Setter for attribute p.
Args:
p (int): type of norm to be plotted for control law.
"""
self.p = p
self._q = indirect_num.dual_to_primal_norm_type(p)
def set_propagation(self, analytical):
"""Setter for attribute prop_ana.
Args:
analytical (bool): set to true for analytical propagation of motion, false for integration.
"""
self.analytical = analytical
def set_boundary_cond(self, BC):
"""Setter for attribute BC.
Args:
BC (utils.BoundaryConditions): constraints for two-point boundary value problem.
"""
self.BC = BC.copy()
self._states = None
def set_control_law(self, CL):
"""Setter for attribute CL.
Args:
CL (utils.ControlLaw): control law to be simulated.
"""
self.CL = CL.copy()
if self._states is not None:
self._compute_states()
def _compute_states(self):
"""Function computing the history of state variables according to control law.
"""
dim = self.BC.half_dim * 2
if self.linearized and self.analytical:
states = np.zeros((dim, self._nb))
inters = np.zeros((self.CL.N, dim))
for i in range(0, self.CL.N):
if self.BC.half_dim == 1:
inters[i, 1] = self.CL.DVs[i]
else: # in-plane or complete dynamics
inters[i, self.BC.half_dim:dim] = self.CL.DVs[i, :]
for k, nu in enumerate(self._nus):
states[:, k] = self.dyn.propagate(self.BC.nu0, nu, self.BC.x0)
for i, date in enumerate(self.CL.nus):
if nu > date:
states[:, k] += self.dyn.propagate(date, nu, inters[i, :])
elif nu == date:
if self.BC.half_dim == 1:
states[1, k] += self.CL.DVs[i]
else: # in-plane or complete dynamics
states[self.BC.half_dim:dim, k] += self.CL.DVs[i, :]
self._states = states
else: # dynamics for plots has to be numerically simulated
if self.BC.half_dim == 1 and not self.linearized:
raise ValueError("_compute_states: non-linear dynamics cannot be only out-of-plane")
else: # linearized dynamics or in-plane or complete non-linear dynamics
if self.linearized:
integrator = integrators.ABM8(lambda var, x: self.dyn.evaluate_state_deriv(var, x))
else: # non-linear dynamics
integrator = integrators.ABM8(lambda var, x: np.array(self.dyn.evaluate_state_deriv_nonlin(var, x)))
def propagate_num(nu1, nu2, IC):
if nu1 == nu2:
pts_inter = [nu1]
state0 = np.array(IC)
states_inter = [state0]
return states_inter, pts_inter
else: # initial and final true anomaly are different
IC_transformed = self.dyn.transformation(IC, nu1)
n_int = int(math.ceil((nu2 - nu1) / conf.params_other["max_stepsize"]))
(states_transformed, pts_inter) = integrator.integrate(nu1, nu2, IC_transformed, n_int,
keep_history=True)
states_inter = [self.dyn.transformation_inv(states_transformed[j], pt)
for j, pt in enumerate(pts_inter)]
return states_inter, pts_inter
states = []
pts = []
for k in range(0, self.CL.N):
if k == 0:
state0 = np.array(self.BC.x0)
date0 = self.BC.nu0
datef = self.CL.nus[0]
else: # not first loop
state0 = np.array(states[-1])
date0 = pts[-1]
datef = self.CL.nus[k]
(states_inter, pts_inter) = propagate_num(date0, datef, state0)
states_inter[-1][self.BC.half_dim:2*self.BC.half_dim] += self.CL.DVs[k, :]
if len(pts_inter) == 1:
pts.append(pts_inter[0])
states.append(states_inter[0])
else: # not first date
for pt, state in zip(pts_inter[1:], states_inter[1:]):
pts.append(pt)
states.append(state)
if self.BC.nuf != self.CL.nus[-1]:
(states_inter, pts_inter) = propagate_num(self.CL.nus[-1], self.BC.nuf, states[-1])
for pt, state in zip(pts_inter[1:], states_inter[1:]):
pts.append(pt)
states.append(state)
self._nus = pts
self._nb = len(self._nus)
if self.anomaly:
self._pts = pts
else: # the independent variable is time
self._pts = [self.dyn.convToAlterIndVar(self.BC.nu0, 0., nu) for nu in pts]
self._states = np.array(states).transpose()
def plot_pv(self):
"""Function plotting primer vector's components and norm as functions of the independent variable.
"""
# plotting position and velocity as functions of the independent variable
fig, (ax1, ax2) = plt.subplots(2, 1)
# generating primer vector
pv = np.zeros((self.BC.half_dim, self._nb))
if self.analytical:
for k, nu in enumerate(self._nus):
pv[:, k] = np.transpose(self.dyn.evaluate_Y(nu, self.BC.half_dim)).dot(self.CL.lamb)
else:
Ys = self.dyn.integrate_Y(self._nus, self.BC.half_dim)
for k in range(0, self._nb):
pv[:, k] = np.transpose(Ys[:, k * self.BC.half_dim: (k + 1) * self.BC.half_dim]).dot(self.CL.lamb)
pv_norm = [linalg.norm(pv[:, k], self._q) for k in range(0, self._nb)]
# plotting primer vector
min_pv = np.min(pv[0, :])
max_pv = np.max(pv[0, :])
if self.BC.half_dim == 1:
ax1.plot(self._pts, pv[0, :], color="black", ls="dashed", label="$\delta z$-axis", linewidth=2)
else: # in-plane or complete dynamics
min_pv = min(np.min(pv[1, :]), min_pv)
max_pv = max(np.max(pv[1, :]), max_pv)
if self.BC.half_dim == 2:
ax1.plot(self._pts, pv[0, :], color="blue", ls="dashed", label="$\delta x$-axis", linewidth=2)
ax1.plot(self._pts, pv[1, :], color="red", ls="dashed", label="$\delta y$-axis", linewidth=2)
else: # complete dynamics
ax1.plot(self._pts, pv[0, :], color="blue", ls="dashed", label="$\delta x$-axis", linewidth=2)
ax1.plot(self._pts, pv[1, :], color="red", ls="dashed", label="$\delta y$-axis", linewidth=2)
ax1.plot(self._pts, pv[2, :], color="black", ls="dashed", label="$\delta z$-axis", linewidth=2)
min_pv = min(np.min(pv[2, :]), min_pv)
max_pv = max(np.max(pv[2, :]), max_pv)
ax2.plot(self._pts, pv_norm, color="green", linewidth=2)
ax1.set_ylabel("components")
ax1.set_xlim([self._pts[0], self._pts[-1]])
ax1.set_ylim([min_pv, max_pv])
ax1.grid()
ax1.legend()
ax1.set_title("primer vector")
if self.BC.half_dim == 1:
ax2.set_ylabel("norm")
else: # in-plane or complete dynamics
ax2.set_ylabel(str(self._q) + "-norm")
ax2.set_xlim([self._pts[0], self._pts[-1]])
ax2.set_ylim([0.0, np.max(pv_norm)])
if self.anomaly:
ax2.set_xlabel("true anomaly (rad)")
else: # the independent variable is time
ax2.set_xlabel("time (s)")
ax2.grid()
def plot_states(self):
"""Function plotting the history of state variables and fuel-consumption.
"""
# generating position and velocity
if self._states is None:
self._compute_states()
# plotting position and velocity as functions of the independent variable
fig, (ax1, ax2, ax3) = plt.subplots(3, 1)
index = 0
color_plot = None
while index < self.BC.half_dim:
if self.BC.half_dim == 1:
color_plot = "black"
elif self.BC.half_dim == 2:
if index == 0:
color_plot = "blue"
elif index == 1:
color_plot = "red"
else: # complete dynamics
if index == 0:
color_plot = "blue"
elif index == 1:
color_plot = "red"
else: # index = 2
color_plot = "black"
ax1.plot([self._pts[0]], [self.BC.x0[index]], marker="o", color=color_plot, markersize=12)
ax2.plot([self._pts[0]], [self.BC.x0[index + self.BC.half_dim]], marker="o", color=color_plot,
markersize=12)
ax1.plot([self._pts[-1]], [self.BC.xf[index]], marker="o", color=color_plot, markersize=12)
ax2.plot([self._pts[-1]], [self.BC.xf[index + self.BC.half_dim]], marker="o", color=color_plot,
markersize=12)
ax1.plot(self._pts, self._states[index, :], color_plot, linewidth=2)
ax2.plot(self._pts, self._states[index + self.BC.half_dim, :], color_plot, linewidth=2)
index += 1
if self.linearized:
ax1.set_title("state vector under linearized dynamics")
else: # simulated dynamics is non-linear
ax1.set_title("state vector under non-linear dynamics")
ax1.set_xlim([self._pts[0], self._pts[-1]])
ax2.set_xlim([self._pts[0], self._pts[-1]])
ax1.grid()
ax2.grid()
ax1.set_ylabel("position (m)")
ax2.set_ylabel("velocity (m/s)")
cost = [0.]
if self.CL.nus[0] == self.BC.nu0:
dates_cost = [self._pts[0] - 1.]
else: # first maneuver is not at initial true anomaly
dates_cost = [self._pts[0]]
for k, nu in enumerate(self.CL.nus):
if self.BC.half_dim == 1:
jump = math.fabs(self.CL.DVs[k])
else: # in-plane or complete dynamics
jump = linalg.norm(self.CL.DVs[k, :], self.p)
cost.append(jump + cost[-1])
if self.anomaly:
dates_cost.append(nu)
else: # the independent variable is time
dates_cost.append(self.dyn.convToAlterIndVar(self.BC.nu0, 0., nu))
if dates_cost[-1] != self._pts[-1]:
cost.append(cost[-1])
dates_cost.append(self._pts[-1])
ax3.step(dates_cost, cost, where="post", color="green", linewidth=2)
ax3.set_xlim([self._pts[0], self._pts[-1]])
ax3.set_ylim([0., cost[-1]])
if self.anomaly:
ax3.set_xlabel("true anomaly (rad)")
else: # the independent variable is time
ax3.set_xlabel("time (s)")
ax3.set_ylabel("cost (m/s)")
ax3.grid()
def plot_traj(self):
"""Function plotting the trajectory. In case of pure out-of-plane dynamics, the trajectory is in the phase plane.
"""
# generating position and velocity
if self._states is None:
self._compute_states()
# plotting position and velocity as functions of the independent variable
if self.BC.half_dim == 3:
fig = plt.figure()
color_plot = "green"
ax = fig.add_subplot(111, projection="3d")
ax.plot([self.BC.x0[0]], [self.BC.x0[1]], [self.BC.x0[2]], marker="+", color=color_plot)
ax.plot([self.BC.xf[0]], [self.BC.xf[1]], [self.BC.xf[2]], marker="x", color=color_plot)
ax.plot(self._states[0, :], self._states[1, :], self._states[2, :], color=color_plot)
ax.set_xlabel("X (m)")
ax.set_ylabel("Y (m)")
ax.set_zlabel("Z (m)")
else: # in-plane or ouf-of-plane dynamics only
fig, ax = plt.subplots(1, 1)
if self.BC.half_dim == 1:
color_plot = "black"
else: # in-plane dynamics
color_plot = "purple"
ax.plot([self.BC.x0[0]], [self.BC.x0[1]], marker="+", color=color_plot)
ax.plot([self.BC.xf[0]], [self.BC.xf[1]], marker="x", color=color_plot)
ax.plot(self._states[0, :], self._states[1, :], color=color_plot)
ax.grid()
if self.BC.half_dim == 1:
# enforce first jump to be plotted
ax.plot([self.BC.x0[0], self.BC.x0[0]], [self.BC.x0[1], self._states[1, 0]], color=color_plot)
if self.BC.half_dim == 1:
ax.set_title("phase plane")
else: # in-plane or complete dynamics
ax.set_title("trajectory")
@staticmethod
def show():
"""Function to show all the pre-computed plots.
"""
plt.show()
@staticmethod
def close():
"""Function to close all the plots.
"""
plt.close("all")
def write_states_to_file(self, file_path):
"""Function writing in a file the history of the states' variables.
Args:
file_path (str): The path to create/overwrite the state history.
"""
if self._states is not None:
np.savetxt(file_path, self._states)
else: # state history has not been computed yet
self._compute_states()
np.savetxt(file_path, self._states)