forked from takerum/vat_tf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar10.py
215 lines (180 loc) · 8.96 KB
/
cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# Copyright 2015 Google Inc. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Routine for decoding the CIFAR-10 binary file format."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import tarfile
import numpy as np
from scipy import linalg
import glob
import pickle
from six.moves import xrange # pylint: disable=redefined-builtin
from six.moves import urllib
import tensorflow as tf
from dataset_utils import *
DATA_URL = 'http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('data_dir', '/tmp/cifar10',
'where to store the dataset')
tf.app.flags.DEFINE_integer('num_labeled_examples', 4000, "The number of labeled examples")
tf.app.flags.DEFINE_integer('num_valid_examples', 1000, "The number of validation examples")
tf.app.flags.DEFINE_integer('dataset_seed', 1, "dataset seed")
# Process images of this size. Note that this differs from the original CIFAR
# image size of 32 x 32. If one alters this number, then the entire model
# architecture will change and any model would need to be retrained.
IMAGE_SIZE = 32
# Global constants describing the CIFAR-10 data set.
NUM_CLASSES = 10
NUM_EXAMPLES_TRAIN = 50000
NUM_EXAMPLES_TEST = 10000
def load_cifar10():
"""Download and extract the tarball from Alex's website."""
dest_directory = FLAGS.data_dir
if not os.path.exists(dest_directory):
os.makedirs(dest_directory)
filename = DATA_URL.split('/')[-1]
filepath = os.path.join(dest_directory, filename)
if not os.path.exists(filepath):
def _progress(count, block_size, total_size):
sys.stdout.write('\r>> Downloading %s %.1f%%' %
(filename, float(count * block_size) /
float(total_size) * 100.0))
sys.stdout.flush()
filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress)
print()
statinfo = os.stat(filepath)
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
tarfile.open(filepath, 'r:gz').extractall(dest_directory)
# Training set
print("Loading training data...")
train_images = np.zeros((NUM_EXAMPLES_TRAIN, 3 * 32 * 32), dtype=np.float32)
train_labels = []
for i, data_fn in enumerate(
sorted(glob.glob(FLAGS.data_dir + '/cifar-10-batches-py/data_batch*'))):
batch = unpickle(data_fn)
train_images[i * 10000:(i + 1) * 10000] = batch['data']
train_labels.extend(batch['labels'])
train_images = (train_images - 127.5) / 255.
train_labels = np.asarray(train_labels, dtype=np.int64)
rand_ix = np.random.permutation(NUM_EXAMPLES_TRAIN)
train_images = train_images[rand_ix]
train_labels = train_labels[rand_ix]
print("Loading test data...")
test = unpickle(FLAGS.data_dir + '/cifar-10-batches-py/test_batch')
test_images = test['data'].astype(np.float32)
test_images = (test_images - 127.5) / 255.
test_labels = np.asarray(test['labels'], dtype=np.int64)
print("Apply ZCA whitening")
components, mean, train_images = ZCA(train_images)
np.save('{}/components'.format(FLAGS.data_dir), components)
np.save('{}/mean'.format(FLAGS.data_dir), mean)
test_images = np.dot(test_images - mean, components.T)
train_images = train_images.reshape(
(NUM_EXAMPLES_TRAIN, 3, 32, 32)).transpose((0, 2, 3, 1)).reshape((NUM_EXAMPLES_TRAIN, -1))
test_images = test_images.reshape(
(NUM_EXAMPLES_TEST, 3, 32, 32)).transpose((0, 2, 3, 1)).reshape((NUM_EXAMPLES_TEST, -1))
return (train_images, train_labels), (test_images, test_labels)
def prepare_dataset():
(train_images, train_labels), (test_images, test_labels) = load_cifar10()
dirpath = os.path.join(FLAGS.data_dir, 'seed' + str(FLAGS.dataset_seed))
if not os.path.exists(dirpath):
os.makedirs(dirpath)
rng = np.random.RandomState(FLAGS.dataset_seed)
rand_ix = rng.permutation(NUM_EXAMPLES_TRAIN)
_train_images, _train_labels = train_images[rand_ix], train_labels[rand_ix]
examples_per_class = int(FLAGS.num_labeled_examples / 10)
labeled_train_images = np.zeros((FLAGS.num_labeled_examples, 3072), dtype=np.float32)
labeled_train_labels = np.zeros((FLAGS.num_labeled_examples), dtype=np.int64)
for i in xrange(10):
ind = np.where(_train_labels == i)[0]
labeled_train_images[i * examples_per_class:(i + 1) * examples_per_class] \
= _train_images[ind[0:examples_per_class]]
labeled_train_labels[i * examples_per_class:(i + 1) * examples_per_class] \
= _train_labels[ind[0:examples_per_class]]
_train_images = np.delete(_train_images,
ind[0:examples_per_class], 0)
_train_labels = np.delete(_train_labels,
ind[0:examples_per_class])
rand_ix_labeled = rng.permutation(FLAGS.num_labeled_examples)
labeled_train_images, labeled_train_labels = \
labeled_train_images[rand_ix_labeled], labeled_train_labels[rand_ix_labeled]
convert_images_and_labels(labeled_train_images,
labeled_train_labels,
os.path.join(dirpath, 'labeled_train.tfrecords'))
convert_images_and_labels(train_images, train_labels,
os.path.join(dirpath, 'unlabeled_train.tfrecords'))
convert_images_and_labels(test_images,
test_labels,
os.path.join(dirpath, 'test.tfrecords'))
# Construct dataset for validation
train_images_valid, train_labels_valid = \
labeled_train_images[FLAGS.num_valid_examples:], labeled_train_labels[FLAGS.num_valid_examples:]
test_images_valid, test_labels_valid = \
labeled_train_images[:FLAGS.num_valid_examples], labeled_train_labels[:FLAGS.num_valid_examples]
unlabeled_train_images_valid = np.concatenate(
(train_images_valid, _train_images), axis=0)
unlabeled_train_labels_valid = np.concatenate(
(train_labels_valid, _train_labels), axis=0)
convert_images_and_labels(train_images_valid,
train_labels_valid,
os.path.join(dirpath, 'labeled_train_val.tfrecords'))
convert_images_and_labels(unlabeled_train_images_valid,
unlabeled_train_labels_valid,
os.path.join(dirpath, 'unlabeled_train_val.tfrecords'))
convert_images_and_labels(test_images_valid,
test_labels_valid,
os.path.join(dirpath, 'test_val.tfrecords'))
def inputs(batch_size=100,
train=True, validation=False,
shuffle=True, num_epochs=None):
if validation:
if train:
filenames = ['labeled_train_val.tfrecords']
num_examples = FLAGS.num_labeled_examples - FLAGS.num_valid_examples
else:
filenames = ['test_val.tfrecords']
num_examples = FLAGS.num_valid_examples
else:
if train:
filenames = ['labeled_train.tfrecords']
num_examples = FLAGS.num_labeled_examples
else:
filenames = ['test.tfrecords']
num_examples = NUM_EXAMPLES_TEST
filenames = [os.path.join('seed' + str(FLAGS.dataset_seed), filename) for filename in filenames]
filename_queue = generate_filename_queue(filenames, FLAGS.data_dir, num_epochs)
image, label = read(filename_queue)
image = transform(tf.cast(image, tf.float32)) if train else image
return generate_batch([image, label], num_examples, batch_size, shuffle)
def unlabeled_inputs(batch_size=100,
validation=False,
shuffle=True):
if validation:
filenames = ['unlabeled_train_val.tfrecords']
num_examples = NUM_EXAMPLES_TRAIN - FLAGS.num_valid_examples
else:
filenames = ['unlabeled_train.tfrecords']
num_examples = NUM_EXAMPLES_TRAIN
filenames = [os.path.join('seed' + str(FLAGS.dataset_seed), filename) for filename in filenames]
filename_queue = generate_filename_queue(filenames, FLAGS.data_dir)
image, label = read(filename_queue)
image = transform(tf.cast(image, tf.float32))
return generate_batch([image], num_examples, batch_size, shuffle)
def main(argv):
prepare_dataset()
if __name__ == "__main__":
tf.app.run()