forked from tidyverse/ggplot2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfortify.lm.Rd
88 lines (74 loc) · 2.33 KB
/
fortify.lm.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/fortify-lm.r
\name{fortify.lm}
\alias{fortify.lm}
\title{Supplement the data fitted to a linear model with model fit statistics.}
\usage{
\method{fortify}{lm}(model, data = model$model, ...)
}
\arguments{
\item{model}{linear model}
\item{data}{data set, defaults to data used to fit model}
\item{...}{not used by this method}
}
\value{
The original data with extra columns:
\item{.hat}{Diagonal of the hat matrix}
\item{.sigma}{Estimate of residual standard deviation when
corresponding observation is dropped from model}
\item{.cooksd}{Cooks distance, \code{\link[=cooks.distance]{cooks.distance()}}}
\item{.fitted}{Fitted values of model}
\item{.resid}{Residuals}
\item{.stdresid}{Standardised residuals}
}
\description{
If you have missing values in your model data, you may need to refit
the model with \code{na.action = na.exclude}.
}
\examples{
mod <- lm(mpg ~ wt, data = mtcars)
head(fortify(mod))
head(fortify(mod, mtcars))
plot(mod, which = 1)
ggplot(mod, aes(.fitted, .resid)) +
geom_point() +
geom_hline(yintercept = 0) +
geom_smooth(se = FALSE)
ggplot(mod, aes(.fitted, .stdresid)) +
geom_point() +
geom_hline(yintercept = 0) +
geom_smooth(se = FALSE)
ggplot(fortify(mod, mtcars), aes(.fitted, .stdresid)) +
geom_point(aes(colour = factor(cyl)))
ggplot(fortify(mod, mtcars), aes(mpg, .stdresid)) +
geom_point(aes(colour = factor(cyl)))
plot(mod, which = 2)
ggplot(mod) +
stat_qq(aes(sample = .stdresid)) +
geom_abline()
plot(mod, which = 3)
ggplot(mod, aes(.fitted, sqrt(abs(.stdresid)))) +
geom_point() +
geom_smooth(se = FALSE)
plot(mod, which = 4)
ggplot(mod, aes(seq_along(.cooksd), .cooksd)) +
geom_col()
plot(mod, which = 5)
ggplot(mod, aes(.hat, .stdresid)) +
geom_vline(size = 2, colour = "white", xintercept = 0) +
geom_hline(size = 2, colour = "white", yintercept = 0) +
geom_point() + geom_smooth(se = FALSE)
ggplot(mod, aes(.hat, .stdresid)) +
geom_point(aes(size = .cooksd)) +
geom_smooth(se = FALSE, size = 0.5)
plot(mod, which = 6)
ggplot(mod, aes(.hat, .cooksd)) +
geom_vline(xintercept = 0, colour = NA) +
geom_abline(slope = seq(0, 3, by = 0.5), colour = "white") +
geom_smooth(se = FALSE) +
geom_point()
ggplot(mod, aes(.hat, .cooksd)) +
geom_point(aes(size = .cooksd / .hat)) +
scale_size_area()
}
\keyword{internal}