forked from CheyneyComputerScience/CREMA-D
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocessFinishedResponses.R
executable file
·77 lines (60 loc) · 2.66 KB
/
processFinishedResponses.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
## Author: David G. Cooper
## Email: [email protected]
## Last Modification Date: Sept. 29, 2017
##
## Purpose: This is the main for converting the individual ratings to
## a tabulated form. The script takes a number of steps to complete this
## task:
##
## 1. Read and tabulate finished responses without practice questions
## and repeated questions.
## 2. filter responses that took over 10 seconds
## 3. tabulate and save the results
##
## Dependencies:
## A. Script
## - tabulateVotesV2.r
##
## B. Data Files
## 1. SentenceFilenames.csv
## 2. finishedResponses.csv
## 3. finishedEmoResponses.csv
##
## 0. source the vote counting functions.
source('./tabulateVotesV2.r')
source('./summarizeVotes.r')
## 1. Read and tabulate the file.
## a. make sure the column classes are correct
finishedRespClasses <- c('character','factor','integer','factor','factor','numeric','numeric','numeric','numeric','numeric','character','numeric','character','character','character','numeric','character')
## b. read in the file
finishedResponsesNoRepeatNoPractice <- read.csv('finishedResponses.csv',row.names='X',colClasses=finishedRespClasses)
#
# create a unique identifier for each finishedResponse#
finishedResponsesSessionQuestion <- finishedResponsesNoRepeatNoPractice$sessionNums*1000 + finishedResponsesNoRepeatNoPractice$queryType*100+finishedResponsesNoRepeatNoPractice$questNum
## 2. filter responses that took over 10 seconds,
## were practice questions, or were repeated
## questions.
##
## get emotion responses to get the timing of first
## response.
finishedEmo <- read.csv('finishedEmoResponses.csv',row.names='X')
#
# get the responses that took over 10 seconds for the first click after#
# observing the clip#
distractedResponses <- finishedEmo[which(as.numeric(as.character(finishedEmo$ttr))>10000),]
#
# create a unique identifier for each distractedResponse#
distractedResponseSessionQuestion <- distractedResponses$sessionNums*1000 + distractedResponses$queryType*100+distractedResponses$questNum#
## filter out the responses
goodFinishedResponsesNoRepeatNoPractice <- subset(finishedResponsesNoRepeatNoPractice, !(finishedResponsesSessionQuestion %in% distractedResponseSessionQuestion))
## 3. tabulate the votes
##get fileNames
fileNames <- read.csv('./SentenceFilenames.csv',stringsAsFactors=FALSE);
fileNames[7443,1] <- 7443;
fileNames[7443,2] <- "ANG_HI_practice";
fileNames[7444,1] <- 7444;
fileNames[7444,2] <- "SAD_MD_practice";
## call tabulate function
tabulatedVotes <- tabulateVotesV2(goodFinishedResponsesNoRepeatNoPractice,fileNames)
## call summarize function
summarizedVotes <- summarizeVotes(goodFinishedResponsesNoRepeatNoPractice,fileNames)