forked from mozilla/DeepSpeech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimport_timit.py
executable file
·143 lines (120 loc) · 5.21 KB
/
import_timit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#!/usr/bin/env python
'''
NAME : LDC TIMIT Dataset
URL : https://catalog.ldc.upenn.edu/ldc93s1
HOURS : 5
TYPE : Read - English
AUTHORS : Garofolo, John, et al.
TYPE : LDC Membership
LICENCE : LDC User Agreement
'''
import errno
import os
from os import path
import sys
import tarfile
import fnmatch
import pandas as pd
import subprocess
def clean(word):
# LC ALL & strip punctuation which are not required
new = word.lower().replace('.', '')
new = new.replace(',', '')
new = new.replace(';', '')
new = new.replace('"', '')
new = new.replace('!', '')
new = new.replace('?', '')
new = new.replace(':', '')
new = new.replace('-', '')
return new
def _preprocess_data(args):
# Assume data is downloaded from LDC - https://catalog.ldc.upenn.edu/ldc93s1
# SA sentences are repeated throughout by each speaker therefore can be removed for ASR as they will affect WER
ignoreSASentences = True
if ignoreSASentences:
print("Using recommended ignore SA sentences")
print("Ignoring SA sentences (2 x sentences which are repeated by all speakers)")
else:
print("Using unrecommended setting to include SA sentences")
datapath = args
target = path.join(datapath, "TIMIT")
print("Checking to see if data has already been extracted in given argument: %s", target)
if not path.isdir(target):
print("Could not find extracted data, trying to find: TIMIT-LDC93S1.tgz in: ", datapath)
filepath = path.join(datapath, "TIMIT-LDC93S1.tgz")
if path.isfile(filepath):
print("File found, extracting")
tar = tarfile.open(filepath)
tar.extractall(target)
tar.close()
else:
print("File should be downloaded from LDC and placed at:", filepath)
strerror = "File not found"
raise IOError(errno, strerror, filepath)
else:
# is path therefore continue
print("Found extracted data in: ", target)
print("Preprocessing data")
# We convert the .WAV (NIST sphere format) into MSOFT .wav
# creates _rif.wav as the new .wav file
for root, dirnames, filenames in os.walk(target):
for filename in fnmatch.filter(filenames, "*.WAV"):
sph_file = os.path.join(root, filename)
wav_file = os.path.join(root, filename)[:-4] + "_rif.wav"
print("converting {} to {}".format(sph_file, wav_file))
subprocess.check_call(["sox", sph_file, wav_file])
print("Preprocessing Complete")
print("Building CSVs")
# Lists to build CSV files
train_list_wavs, train_list_trans, train_list_size = [], [], []
test_list_wavs, test_list_trans, test_list_size = [], [], []
for root, dirnames, filenames in os.walk(target):
for filename in fnmatch.filter(filenames, "*_rif.wav"):
full_wav = os.path.join(root, filename)
wav_filesize = path.getsize(full_wav)
# need to remove _rif.wav (8chars) then add .TXT
trans_file = full_wav[:-8] + ".TXT"
with open(trans_file, "r") as f:
for line in f:
split = line.split()
start = split[0]
end = split[1]
t_list = split[2:]
trans = ""
for t in t_list:
trans = trans + " " + clean(t)
# if ignoreSAsentences we only want those without SA in the name
# OR
# if not ignoreSAsentences we want all to be added
if (ignoreSASentences and not ('SA' in os.path.basename(full_wav))) or (not ignoreSASentences):
if 'train' in full_wav.lower():
train_list_wavs.append(full_wav)
train_list_trans.append(trans)
train_list_size.append(wav_filesize)
elif 'test' in full_wav.lower():
test_list_wavs.append(full_wav)
test_list_trans.append(trans)
test_list_size.append(wav_filesize)
else:
raise IOError
a = {'wav_filename': train_list_wavs,
'wav_filesize': train_list_size,
'transcript': train_list_trans
}
c = {'wav_filename': test_list_wavs,
'wav_filesize': test_list_size,
'transcript': test_list_trans
}
all = {'wav_filename': train_list_wavs + test_list_wavs,
'wav_filesize': train_list_size + test_list_size,
'transcript': train_list_trans + test_list_trans
}
df_all = pd.DataFrame(all, columns=['wav_filename', 'wav_filesize', 'transcript'], dtype=int)
df_train = pd.DataFrame(a, columns=['wav_filename', 'wav_filesize', 'transcript'], dtype=int)
df_test = pd.DataFrame(c, columns=['wav_filename', 'wav_filesize', 'transcript'], dtype=int)
df_all.to_csv(target+"/timit_all.csv", sep=',', header=True, index=False, encoding='ascii')
df_train.to_csv(target+"/timit_train.csv", sep=',', header=True, index=False, encoding='ascii')
df_test.to_csv(target+"/timit_test.csv", sep=',', header=True, index=False, encoding='ascii')
if __name__ == "__main__":
_preprocess_data(sys.argv[1])
print("Completed")