forked from Orillusion/orillusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Random.ts
588 lines (532 loc) · 20.5 KB
/
Random.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
/**
* @internal
*/
export function uniform_real_distribution(min, max) {
return Math.random() * max + Math.random() * min + (max - min) * Math.random();
}
/**
* @internal
*/
export function uniform_real_distribution2(min, max, rng) {
let rd = rng * Math.random();
return Math.random() * max * rd + Math.random() * min * rd + (max - min) * Math.random() * rd;
}
/**
* @internal
*/
export function normal_distribution(min, max, skew) {
let u = 0, v = 0;
while (u === 0) u = Math.random(); //Converting [0,1) to (0,1)
while (v === 0) v = Math.random();
let num = Math.sqrt(-2.0 * Math.log(u)) * Math.cos(2.0 * Math.PI * v);
num = num / 10.0 + 0.5; // Translate to 0 -> 1
if (num > 1 || num < 0) num = normal_distribution(min, max, skew); // resample between 0 and 1 if out of range
num = Math.pow(num, skew); // Skew
num *= max - min; // Stretch to fill range
num += min; // offset to min
return num;
}
/*
* This implementation is "Simplex Noise" as presented by
* Ken Perlin at a relatively obscure and not often cited course
* session "Real-Time Shading" at Siggraph 2001 (before real
* time shading actually took on), under the title "hardware noise".
* The 3D function is numerically equivalent to his Java reference
* code available in the PDF course notes, although I re-implemented
* it from scratch to get more readable code. The 1D, 2D and 4D cases
* were implemented from scratch by me from Ken Perlin's text.
*
* This file has no dependencies on any other file, not even its own
* header file. The header file is made for use by external code only.
*/
/**
* @internal
*/
export function FASTFLOOR(x) {
return x > 0 ? Math.floor(x) : Math.floor(x) - 1;
}
/*
* Permutation table. This is just a random jumble of all numbers 0-255,
* repeated twice to avoid wrapping the index at 255 for each lookup.
* This needs to be exactly the same for all instances on all platforms,
* so it's easiest to just keep it as static explicit data.
* This also removes the need for any initialisation of this class.
*
* Note that making this an int[] instead of a char[] might make the
* code run faster on platforms with a high penalty for unaligned single
* byte addressing. Intel x86 is generally single-byte-friendly, but
* some other CPUs are faster with 4-aligned reads.
* However, a char[] is smaller, which avoids cache trashing, and that
* is probably the most important aspect on most architectures.
* This array is accessed a *lot* by the noise functions.
* A vector-valued noise over 3D accesses it 96 times, and a
* float-valued 4D noise 64 times. We want this to fit in the cache!
*/
/**
* @internal
*/
export let perm = [
151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71,
134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226,
250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97,
228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180, 151, 160,
137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139,
48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124,
123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251,
34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180,
];
/*
* Helper functions to compute gradients-dot-residualvectors (1D to 4D)
* Note that these generate gradients of more than unit length. To make
* a close match with the value range of classic Perlin noise, the final
* noise values need to be rescaled to fit nicely within [-1,1].
* (The simplex noise functions as such also have different scaling.)
* Note also that these noise functions are the most practical and useful
* signed version of Perlin noise. To return values according to the
* RenderMan specification from the SL noise() and pnoise() functions,
* the noise values need to be scaled and offset to [0,1], like this:
* float SLnoise = (noise(x,y,z) + 1.0) * 0.5;
*/
/**
* @internal
*/
export function grad1(hash, x) {
let h = hash & 15;
let grad = 1.0 + (h & 7); // Gradient value 1.0, 2.0, ..., 8.0
if (h & 8) grad = -grad; // Set a random sign for the gradient
return grad * x; // Multiply the gradient with the distance
}
/**
* @internal
*/
export function grad2(hash, x, y) {
let h = hash & 7; // Convert low 3 bits of hash code
let u = h < 4 ? x : y; // into 8 simple gradient directions,
let v = h < 4 ? y : x; // and compute the dot product with (x,y).
return (h & 1 ? -u : u) + (h & 2 ? -2.0 * v : 2.0 * v);
}
/**
* @internal
*/
export function grad3(hash, x, y, z) {
let h = hash & 15; // Convert low 4 bits of hash code into 12 simple
let u = h < 8 ? x : y; // gradient directions, and compute dot product.
let v = h < 4 ? y : h == 12 || h == 14 ? x : z; // Fix repeats at h = 12 to 15
return (h & 1 ? -u : u) + (h & 2 ? -v : v);
}
/**
* @internal
*/
export function grad4(hash, x, y, z, t) {
let h = hash & 31; // Convert low 5 bits of hash code into 32 simple
let u = h < 24 ? x : y; // gradient directions, and compute dot product.
let v = h < 16 ? y : z;
let w = h < 8 ? z : t;
return (h & 1 ? -u : u) + (h & 2 ? -v : v) + (h & 4 ? -w : w);
}
// A lookup table to traverse the simplex around a given point in 4D.
// Details can be found where this table is used, in the 4D noise method.
/* TODO: This should not be required, backport it from Bill's GLSL code! */
/**
* @internal
*/
export let simplex = [
[0, 1, 2, 3],
[0, 1, 3, 2],
[0, 0, 0, 0],
[0, 2, 3, 1],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[1, 2, 3, 0],
[0, 2, 1, 3],
[0, 0, 0, 0],
[0, 3, 1, 2],
[0, 3, 2, 1],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[1, 3, 2, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[1, 2, 0, 3],
[0, 0, 0, 0],
[1, 3, 0, 2],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[2, 3, 0, 1],
[2, 3, 1, 0],
[1, 0, 2, 3],
[1, 0, 3, 2],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[2, 0, 3, 1],
[0, 0, 0, 0],
[2, 1, 3, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[2, 0, 1, 3],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[3, 0, 1, 2],
[3, 0, 2, 1],
[0, 0, 0, 0],
[3, 1, 2, 0],
[2, 1, 0, 3],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[3, 1, 0, 2],
[0, 0, 0, 0],
[3, 2, 0, 1],
[3, 2, 1, 0],
];
/**
* @internal
*/
export function snoise1(x) {
let i0 = FASTFLOOR(x);
let i1 = i0 + 1;
let x0 = x - i0;
let x1 = x0 - 1.0;
let n0, n1;
let t0 = 1.0 - x0 * x0;
// if(t0 < 0.0f) t0 = 0.0f; // this never happens for the 1D case
t0 *= t0;
n0 = t0 * t0 * grad1(perm[i0 & 0xff], x0);
let t1 = 1.0 - x1 * x1;
// if(t1 < 0.0f) t1 = 0.0f; // this never happens for the 1D case
t1 *= t1;
n1 = t1 * t1 * grad1(perm[i1 & 0xff], x1);
// The maximum value of this noise is 8*(3/4)^4 = 2.53125
// A factor of 0.395 would scale to fit exactly within [-1,1], but
// we want to match PRMan's 1D noise, so we scale it down some more.
return 0.25 * (n0 + n1);
}
// 2D simplex noise
/**
* @internal
*/
export function snoise2(x, y) {
const F2 = 0.366025403; // F2 = 0.5*(sqrt(3.0)-1.0)
const G2 = 0.211324865; // G2 = (3.0-Math.sqrt(3.0))/6.0
let n0, n1, n2; // Noise contributions from the three corners
// Skew the input space to determine which simplex cell we're in
let s = (x + y) * F2; // Hairy factor for 2D
let xs = x + s;
let ys = y + s;
let i = FASTFLOOR(xs);
let j = FASTFLOOR(ys);
let t = (i + j) * G2;
let X0 = i - t; // Unskew the cell origin back to (x,y) space
let Y0 = j - t;
let x0 = x - X0; // The x,y distances from the cell origin
let y0 = y - Y0;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
let i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
if (x0 > y0) {
i1 = 1;
j1 = 0;
} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
else {
i1 = 0;
j1 = 1;
} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
let x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
let y1 = y0 - j1 + G2;
let x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
let y2 = y0 - 1.0 + 2.0 * G2;
// Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
let ii = i & 0xff;
let jj = j & 0xff;
// Calculate the contribution from the three corners
let t0 = 0.5 - x0 * x0 - y0 * y0;
if (t0 < 0.0) n0 = 0.0;
else {
t0 *= t0;
n0 = t0 * t0 * grad2(perm[ii + perm[jj]], x0, y0);
}
let t1 = 0.5 - x1 * x1 - y1 * y1;
if (t1 < 0.0) n1 = 0.0;
else {
t1 *= t1;
n1 = t1 * t1 * grad2(perm[ii + i1 + perm[jj + j1]], x1, y1);
}
let t2 = 0.5 - x2 * x2 - y2 * y2;
if (t2 < 0.0) n2 = 0.0;
else {
t2 *= t2;
n2 = t2 * t2 * grad2(perm[ii + 1 + perm[jj + 1]], x2, y2);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 40.0 * (n0 + n1 + n2); // TODO: The scale factor is preliminary!
}
// 3D simplex noise
/**
* @internal
*/
export function snoise3(x, y, z) {
// Simple skewing factors for the 3D case
const F3 = 0.333333333;
const G3 = 0.166666667;
let n0, n1, n2, n3; // Noise contributions from the four corners
// Skew the input space to determine which simplex cell we're in
let s = (x + y + z) * F3; // Very nice and simple skew factor for 3D
let xs = x + s;
let ys = y + s;
let zs = z + s;
let i = FASTFLOOR(xs);
let j = FASTFLOOR(ys);
let k = FASTFLOOR(zs);
let t = (i + j + k) * G3;
let X0 = i - t; // Unskew the cell origin back to (x,y,z) space
let Y0 = j - t;
let Z0 = k - t;
let x0 = x - X0; // The x,y,z distances from the cell origin
let y0 = y - Y0;
let z0 = z - Z0;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
let i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
let i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
/* This code would benefit from a backport from the GLSL version! */
if (x0 >= y0) {
if (y0 >= z0) {
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
} // X Y Z order
else if (x0 >= z0) {
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 0;
k2 = 1;
} // X Z Y order
else {
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 1;
j2 = 0;
k2 = 1;
} // Z X Y order
} else {
// x0<y0
if (y0 < z0) {
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 0;
j2 = 1;
k2 = 1;
} // Z Y X order
else if (x0 < z0) {
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 0;
j2 = 1;
k2 = 1;
} // Y Z X order
else {
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
} // Y X Z order
}
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
// c = 1/6.
let x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
let y1 = y0 - j1 + G3;
let z1 = z0 - k1 + G3;
let x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords
let y2 = y0 - j2 + 2.0 * G3;
let z2 = z0 - k2 + 2.0 * G3;
let x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords
let y3 = y0 - 1.0 + 3.0 * G3;
let z3 = z0 - 1.0 + 3.0 * G3;
// Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
let ii = i & 0xff;
let jj = j & 0xff;
let kk = k & 0xff;
// Calculate the contribution from the four corners
let t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
if (t0 < 0.0) n0 = 0.0;
else {
t0 *= t0;
n0 = t0 * t0 * grad3(perm[ii + perm[jj + perm[kk]]], x0, y0, z0);
}
let t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
if (t1 < 0.0) n1 = 0.0;
else {
t1 *= t1;
n1 = t1 * t1 * grad3(perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]], x1, y1, z1);
}
let t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
if (t2 < 0.0) n2 = 0.0;
else {
t2 *= t2;
n2 = t2 * t2 * grad3(perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]], x2, y2, z2);
}
let t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
if (t3 < 0.0) n3 = 0.0;
else {
t3 *= t3;
n3 = t3 * t3 * grad3(perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]], x3, y3, z3);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to stay just inside [-1,1]
return 32.0 * (n0 + n1 + n2 + n3); // TODO: The scale factor is preliminary!
}
// 4D simplex noise
/**
* @internal
*/
export function snoise4(x, y, z, w) {
// The skewing and unskewing factors are hairy again for the 4D case
const F4 = 0.309016994; // F4 = (Math.sqrt(5.0)-1.0)/4.0
const G4 = 0.138196601; // G4 = (5.0-Math.sqrt(5.0))/20.0
let n0, n1, n2, n3, n4; // Noise contributions from the five corners
// Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
let s = (x + y + z + w) * F4; // Factor for 4D skewing
let xs = x + s;
let ys = y + s;
let zs = z + s;
let ws = w + s;
let i = FASTFLOOR(xs);
let j = FASTFLOOR(ys);
let k = FASTFLOOR(zs);
let l = FASTFLOOR(ws);
let t = (i + j + k + l) * G4; // Factor for 4D unskewing
let X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
let Y0 = j - t;
let Z0 = k - t;
let W0 = l - t;
let x0 = x - X0; // The x,y,z,w distances from the cell origin
let y0 = y - Y0;
let z0 = z - Z0;
let w0 = w - W0;
// For the 4D case, the simplex is a 4D shape I won't even try to describe.
// To find out which of the 24 possible simplices we're in, we need to
// determine the magnitude ordering of x0, y0, z0 and w0.
// The method below is a good way of finding the ordering of x,y,z,w and
// then find the correct traversal order for the simplex were in.
// First, six pair-wise comparisons are performed between each possible pair
// of the four coordinates, and the results are used to add up binary bits
// for an integer index.
let c1 = x0 > y0 ? 32 : 0;
let c2 = x0 > z0 ? 16 : 0;
let c3 = y0 > z0 ? 8 : 0;
let c4 = x0 > w0 ? 4 : 0;
let c5 = y0 > w0 ? 2 : 0;
let c6 = z0 > w0 ? 1 : 0;
let c = c1 + c2 + c3 + c4 + c5 + c6;
let i1, j1, k1, l1; // The integer offsets for the second simplex corner
let i2, j2, k2, l2; // The integer offsets for the third simplex corner
let i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
// simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
// Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
// impossible. Only the 24 indices which have non-zero entries make any sense.
// We use a thresholding to set the coordinates in turn from the largest magnitude.
// The number 3 in the "simplex" array is at the position of the largest coordinate.
i1 = simplex[c][0] >= 3 ? 1 : 0;
j1 = simplex[c][1] >= 3 ? 1 : 0;
k1 = simplex[c][2] >= 3 ? 1 : 0;
l1 = simplex[c][3] >= 3 ? 1 : 0;
// The number 2 in the "simplex" array is at the second largest coordinate.
i2 = simplex[c][0] >= 2 ? 1 : 0;
j2 = simplex[c][1] >= 2 ? 1 : 0;
k2 = simplex[c][2] >= 2 ? 1 : 0;
l2 = simplex[c][3] >= 2 ? 1 : 0;
// The number 1 in the "simplex" array is at the second smallest coordinate.
i3 = simplex[c][0] >= 1 ? 1 : 0;
j3 = simplex[c][1] >= 1 ? 1 : 0;
k3 = simplex[c][2] >= 1 ? 1 : 0;
l3 = simplex[c][3] >= 1 ? 1 : 0;
// The fifth corner has all coordinate offsets = 1, so no need to look that up.
let x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
let y1 = y0 - j1 + G4;
let z1 = z0 - k1 + G4;
let w1 = w0 - l1 + G4;
let x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords
let y2 = y0 - j2 + 2.0 * G4;
let z2 = z0 - k2 + 2.0 * G4;
let w2 = w0 - l2 + 2.0 * G4;
let x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords
let y3 = y0 - j3 + 3.0 * G4;
let z3 = z0 - k3 + 3.0 * G4;
let w3 = w0 - l3 + 3.0 * G4;
let x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords
let y4 = y0 - 1.0 + 4.0 * G4;
let z4 = z0 - 1.0 + 4.0 * G4;
let w4 = w0 - 1.0 + 4.0 * G4;
// Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
let ii = i & 0xff;
let jj = j & 0xff;
let kk = k & 0xff;
let ll = l & 0xff;
// Calculate the contribution from the five corners
let t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
if (t0 < 0.0) n0 = 0.0;
else {
t0 *= t0;
n0 = t0 * t0 * grad4(perm[ii + perm[jj + perm[kk + perm[ll]]]], x0, y0, z0, w0);
}
let t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
if (t1 < 0.0) n1 = 0.0;
else {
t1 *= t1;
n1 = t1 * t1 * grad4(perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]], x1, y1, z1, w1);
}
let t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
if (t2 < 0.0) n2 = 0.0;
else {
t2 *= t2;
n2 = t2 * t2 * grad4(perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]], x2, y2, z2, w2);
}
let t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
if (t3 < 0.0) n3 = 0.0;
else {
t3 *= t3;
n3 = t3 * t3 * grad4(perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]], x3, y3, z3, w3);
}
let t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
if (t4 < 0.0) n4 = 0.0;
else {
t4 *= t4;
n4 = t4 * t4 * grad4(perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]], x4, y4, z4, w4);
}
// Sum up and scale the result to cover the range [-1,1]
return 27.0 * (n0 + n1 + n2 + n3 + n4); // TODO: The scale factor is preliminary!
}
//---------------------------------------------------------------------