-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathE2GNN.py
281 lines (225 loc) · 9.43 KB
/
E2GNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# %%
import math
import torch
from torch import nn
from torch_scatter import scatter
from graph_utils import ScaledSiLU, AtomEmbedding, RadialBasis, radius_graph_pbc
from torch_geometric.nn import radius_graph
from torch_geometric.nn import global_mean_pool
class GlobalScalar(nn.Module):
def __init__(self, in_feats, out_feats, residual=False):
super(GlobalScalar, self).__init__()
# Add residual connection or not
self.residual = residual
self.mlp_vn = nn.Sequential(
nn.Linear(in_feats * 2, out_feats),
ScaledSiLU(),
nn.Linear(out_feats, out_feats),
ScaledSiLU())
self.mlp_node = nn.Sequential(
nn.Linear(in_feats * 2, out_feats),
ScaledSiLU(),
nn.Linear(out_feats, out_feats),
ScaledSiLU())
def update_local_emb(self, x, batch, vx):
h = self.mlp_node(torch.cat([x, vx[batch]], dim=1)) + x
return h, vx
def update_global_emb(self, x, batch, vx):
vx_temp = self.mlp_vn(torch.cat([global_mean_pool(x, batch), vx], dim=-1))
if self.residual:
vx = vx + vx_temp
else:
vx = vx_temp
return vx
class GlobalVector(nn.Module):
def __init__(self, in_feats, out_feats, residual=False):
super(GlobalVector, self).__init__()
# Add residual connection or not
self.residual = residual
self.mlp_vn = nn.Linear(in_feats, out_feats, bias=False)
self.mlp_node = nn.Linear(in_feats, out_feats, bias=False)
def update_local_emb(self, vec, batch, vvec):
hvec = self.mlp_node(vec + vvec[batch]) + vec
return hvec, vvec
def update_global_emb(self, vec, batch, vvec):
vvec_temp = self.mlp_vn(scatter(vec, batch, dim=0, reduce='mean', dim_size=vvec.size(0)) + vvec)
if self.residual:
vvec = vvec + vvec_temp
else:
vvec = vvec_temp
return vvec
class E2GNNMessage(nn.Module):
def __init__(
self,
hidden_channels,
num_rbf,
):
super(E2GNNMessage, self).__init__()
self.hidden_channels = hidden_channels
self.x_proj = nn.Sequential(
nn.Linear(hidden_channels, hidden_channels // 2),
ScaledSiLU(),
nn.Linear(hidden_channels // 2, hidden_channels*3),
)
self.rbf_proj = nn.Linear(num_rbf, hidden_channels*3)
self.inv_sqrt_3 = 1 / math.sqrt(3.0)
self.inv_sqrt_h = 1 / math.sqrt(hidden_channels)
def forward(self, x, vec, edge_index, edge_rbf, edge_vector):
j, i = edge_index
rbf_h = self.rbf_proj(edge_rbf)
x_h = self.x_proj(x)
x_ji1, x_ji2, x_ji3 = torch.split(x_h[j] * rbf_h * self.inv_sqrt_3, self.hidden_channels, dim=-1)
vec_ji = x_ji1.unsqueeze(1) * vec[j] + x_ji2.unsqueeze(1) * edge_vector.unsqueeze(2)
vec_ji = vec_ji * self.inv_sqrt_h
d_vec = scatter(vec_ji, index=i, dim=0, dim_size=x.size(0))
d_x = scatter(x_ji3, index=i, dim=0, dim_size=x.size(0))
return d_x, d_vec
class E2GNNUpdate(nn.Module):
def __init__(self, hidden_channels):
super().__init__()
self.hidden_channels = hidden_channels
self.vec_proj = nn.Linear(
hidden_channels, hidden_channels*2, bias=False
)
self.xvec_proj = nn.Sequential(
nn.Linear(hidden_channels*2, hidden_channels),
ScaledSiLU(),
nn.Linear(hidden_channels, hidden_channels*3),
)
self.inv_sqrt_2 = 1 / math.sqrt(2.0)
def forward(self, x, vec):
vec1, vec2 = torch.split(
self.vec_proj(vec), self.hidden_channels, dim=-1
)
x_vec_h = self.xvec_proj(
torch.cat(
[x, torch.sqrt(torch.sum(vec2**2, dim=-2) + 1e-8)], dim=-1
)
)
xvec1, xvec2, xvec3 = torch.split(
x_vec_h, self.hidden_channels, dim=-1
)
gate = torch.tanh(xvec3)
dx = xvec2 * self.inv_sqrt_2 + x * gate
dvec = xvec1.unsqueeze(1) * vec1
return dx, dvec
class E2GNN(nn.Module):
def __init__(
self,
hidden_channels=512,
num_layers=3,
num_rbf=128,
cutoff=6.0,
max_neighbors=20,
rbf: dict = {"name": "gaussian"},
envelope: dict = {"name": "polynomial", "exponent": 5},
regress_forces=True,
direct_forces=True,
use_pbc=False,
otf_graph=True,
num_elements=83,
):
super(E2GNN, self).__init__()
self.hidden_channels = hidden_channels
self.num_layers = num_layers
self.num_rbf = num_rbf
self.cutoff = cutoff
self.max_neighbors = max_neighbors
self.regress_forces = regress_forces
self.direct_forces = direct_forces
self.otf_graph = otf_graph
self.use_pbc = use_pbc
#### Learnable parameters #############################################
self.atom_emb = AtomEmbedding(hidden_channels, num_elements)
self.vn_emb = nn.Embedding(1, hidden_channels)
self.radial_basis = RadialBasis(
num_radial=num_rbf,
cutoff=self.cutoff,
rbf=rbf,
envelope=envelope,
)
self.message_layers = nn.ModuleList()
self.update_layers = nn.ModuleList()
self.global_vector_layers = nn.ModuleList()
self.global_scalar_layers = nn.ModuleList()
for i in range(num_layers):
self.message_layers.append(
E2GNNMessage(hidden_channels, num_rbf)
)
self.update_layers.append(E2GNNUpdate(hidden_channels))
self.global_vector_layers.append(GlobalVector(hidden_channels, hidden_channels, residual=True))
self.global_scalar_layers.append(GlobalScalar(hidden_channels, hidden_channels, residual=True))
self.out_energy = nn.Sequential(
nn.Linear(hidden_channels, hidden_channels // 2),
ScaledSiLU(),
nn.Linear(hidden_channels // 2, 1),
)
self.out_forces = nn.Linear(hidden_channels, 1, bias=False)
self.inv_sqrt_2 = 1 / math.sqrt(2.0)
def forward(self, data):
pos = data.pos
batch = data.batch
natoms = data.natoms
z = data.atomic_numbers.long()
assert z.dim() == 1 and z.dtype == torch.long
if self.otf_graph:
if self.use_pbc:
edge_index, cell_offsets, neighbors = radius_graph_pbc(
data, self.cutoff, self.max_neighbors
)
cell = data.cell
j, i = edge_index
cell_offsets_unsqueeze = cell_offsets.unsqueeze(1).float()
abc_unsqueeze = cell.repeat_interleave(neighbors, dim=0)
vecs = (pos[j] + (cell_offsets_unsqueeze @ abc_unsqueeze).squeeze(1)) - pos[i]
edge_dist = vecs.norm(dim=-1)
edge_vector = -vecs/edge_dist.unsqueeze(-1)
else:
edge_index = radius_graph(pos, self.cutoff, batch, max_num_neighbors=self.max_neighbors)
j, i = edge_index
vecs = pos[j] - pos[i]
edge_dist = vecs.norm(dim=-1)
edge_vector = -vecs/edge_dist.unsqueeze(-1)
else:
if self.use_pbc:
edge_index, cell, cell_offsets, neighbors = data.edge_index, data.cell, data.cell_offsets, data.neighbors
abc_unsqueeze = cell.repeat_interleave(neighbors, dim=0)
j, i = edge_index
cell_offsets_unsqueeze = cell_offsets.unsqueeze(1).float()
vecs = (pos[j] + (cell_offsets_unsqueeze @ abc_unsqueeze).squeeze(1)) - pos[i]
edge_dist = vecs.norm(dim=-1)
edge_vector = -vecs/edge_dist.unsqueeze(-1)
else:
edge_index = data.edge_index
j, i = edge_index
vecs = pos[j] - pos[i]
edge_dist = vecs.norm(dim=-1)
edge_vector = -vecs/edge_dist.unsqueeze(-1)
edge_rbf = self.radial_basis(edge_dist) # rbf * evelope
x = self.atom_emb(z)
vec = torch.zeros(x.size(0), 3, x.size(1), device=x.device)
vx = self.vn_emb(torch.zeros(
batch[-1].item() + 1).to(edge_index.dtype).to(edge_index.device))
vvec = torch.zeros(
batch[-1].item() + 1, 3, x.size(1)).to(edge_index.dtype).to(edge_index.device)
#### Interaction blocks ###############################################
for i in range(self.num_layers):
x, vx = self.global_scalar_layers[i].update_local_emb(x, batch, vx)
vec, vvec = self.global_vector_layers[i].update_local_emb(vec, batch, vvec)
dx, dvec = self.message_layers[i](
x, vec, edge_index, edge_rbf, edge_vector
)
x = x + dx
vec = vec + dvec
x = x * self.inv_sqrt_2
dx, dvec = self.update_layers[i](x, vec)
x = x + dx
vec = vec + dvec
vx = self.global_scalar_layers[i].update_global_emb(x, batch, vx)
vvec = self.global_vector_layers[i].update_global_emb(vec, batch, vvec)
#### Output block #####################################################
per_atom_energy = self.out_energy(x).squeeze(1)
energy = scatter(per_atom_energy, batch, dim=0)
forces = self.out_forces(vec).squeeze(-1)
return energy, forces
# %%