forked from 920232796/bert_seq2seq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path做数学题_test.py
29 lines (26 loc) · 1.4 KB
/
做数学题_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import torch
from bert_seq2seq import Tokenizer, load_chinese_base_vocab
from bert_seq2seq import load_bert
vocab_path = "./state_dict/roberta_wwm_vocab.txt" # roberta模型字典的位置
model_name = "roberta" # 选择模型名字
model_path = "./state_dict/bert_math_ques_model.bin"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if __name__ == "__main__":
vocab_path = "./state_dict/roberta_wwm_vocab.txt" # roberta模型字典的位置
model_name = "roberta" # 选择模型名字
# 加载字典
word2idx = load_chinese_base_vocab(vocab_path, simplfied=False)
tokenizer = Tokenizer(word2idx)
# 定义模型
bert_model = load_bert(word2idx, model_name=model_name, model_class="seq2seq")
bert_model.set_device(device)
bert_model.eval()
## 加载训练的模型参数~
bert_model.load_all_params(model_path=model_path, device=device)
test_data = ["王艳家买了一台洗衣机和一台电冰箱,一共花了6000元,电冰箱的价钱是洗衣机的3/5,求洗衣机的价钱.",
"六1班原来男生占总数的2/5,又转来5名男生,现在男生占总数的5/11,女生有多少人?",
"两个相同的数相乘,积是3600,这个数是多少.",
"1加1等于几"]
for text in test_data:
with torch.no_grad():
print(bert_model.generate(text, beam_size=3))