You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I tested your demo code on the videos provided by the other work (SfV: Reinforcement Learning of Physical Skills from Videos [Peng et al. 2018]). Each video contains the human motion like jump, cartwheel, dance, and etc.
I ran your code on them but it failed to reconstruct the motion, instead got the Runtime error below..
Building the network
x: tensor([[[-5.2118e-03, -1.9778e-03, 3.7148e-02, ..., 4.0354e-01,
7.9354e-01, 1.3558e+00],
[ 5.9371e-01, 2.1293e+00, 3.0198e+00, ..., 1.3015e+00,
-3.0760e-03, 5.9612e-02],
[ 2.6908e+00, 2.8417e+00, 3.1971e+00, ..., 2.9587e+00,
-8.6406e-03, -2.6097e-02],
...,
[ 2.9316e+00, 4.8310e+00, 5.9596e+00, ..., 3.5114e+00,
6.2439e-01, 2.0394e+00],
[-1.5403e-02, -6.0191e-02, -8.2277e-02, ..., -4.6780e-02,
-2.5275e-02, -4.6015e-02],
[-8.5922e-03, -2.5728e-03, 5.3182e-02, ..., -2.7516e-03,
-9.3090e-03, -4.1515e-03]]], device='cuda:0') <class 'torch.Tensor'> torch.Size([1, 1024, 10])
x: tensor([[[-0.0239, -0.0236, -0.0197, ..., -0.0534, -0.0357, -0.0212],
[-0.0038, -0.0016, -0.0057, ..., -0.0095, -0.0091, -0.0155],
[-0.0023, -0.0016, -0.0032, ..., 0.6250, 0.5801, -0.0042],
...,
[-0.0215, -0.0185, -0.0183, ..., -0.0356, -0.0176, -0.0103],
[-0.0991, -0.1097, -0.0967, ..., -0.1064, -0.0717, -0.0246],
[-0.0532, -0.0627, -0.0558, ..., -0.0655, -0.0536, -0.0239]]],
device='cuda:0') <class 'torch.Tensor'> torch.Size([1, 1024, 8])
x: tensor([[[ 0.7402, 1.0614, 0.9979, ..., -0.0066, 0.5572, 1.4654],
[-0.0823, -0.1001, -0.0753, ..., -0.0456, -0.0340, -0.0150],
[-0.0556, -0.0696, -0.0560, ..., -0.0411, -0.0323, -0.0139],
...,
[ 1.7153, 2.3598, 1.4705, ..., -0.0079, 0.0161, 0.3899],
[-0.0161, -0.0133, -0.0115, ..., -0.0120, -0.0171, -0.0142],
[-0.0651, -0.0784, -0.0599, ..., -0.0418, -0.0331, -0.0132]]],
device='cuda:0') <class 'torch.Tensor'> torch.Size([1, 1024, 8])
x: tensor([[[-0.0262, -0.0155],
[ 1.2542, 0.8397],
[ 0.4866, 0.3434],
...,
[ 0.3525, -0.0054],
[-0.0251, -0.0131],
[-0.0137, -0.0037]]], device='cuda:0') <class 'torch.Tensor'> torch.Size([1, 1024, 2])
Traceback (most recent call last):
File "evaluate.py", line 144, in
main(config, args, output_folder)
File "evaluate.py", line 121, in main
export(args.input)
File "evaluate.py", line 101, in export
pre_bones, pre_rotations, pre_rotations_full, pre_pose_3d, pre_c, pre_proj = model.forward_fk(poses_2d_root, parameters)
File "/ssd_data/MotioNet/model/model.py", line 57, in forward_fk
fake_bones = self.forward_S(_input)
File "/ssd_data/MotioNet/model/model.py", line 40, in forward_S
return self.branch_S(_input)
File "/home/trif/anaconda3/envs/motionet-env/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/ssd_data/MotioNet/model/model_zoo.py", line 302, in forward
x = self.drop(self.relu(layer(x)))
File "/home/trif/anaconda3/envs/motionet-env/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/trif/anaconda3/envs/motionet-env/lib/python3.7/site-packages/torch/nn/modules/container.py", line 119, in forward
input = module(input)
File "/home/trif/anaconda3/envs/motionet-env/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/trif/anaconda3/envs/motionet-env/lib/python3.7/site-packages/torch/nn/modules/conv.py", line 263, in forward
return self._conv_forward(input, self.weight, self.bias)
File "/home/trif/anaconda3/envs/motionet-env/lib/python3.7/site-packages/torch/nn/modules/conv.py", line 260, in _conv_forward
self.padding, self.dilation, self.groups)
RuntimeError: Calculated padded input size per channel: (2). Kernel size: (3). Kernel size can't be greater than actual input size
Do you know what is causing this error?
Thanks!
The text was updated successfully, but these errors were encountered:
Dear authors,
Hello! thank you for providing the awesome codes.
I tested your demo code on the videos provided by the other work (SfV: Reinforcement Learning of Physical Skills from Videos [Peng et al. 2018]). Each video contains the human motion like jump, cartwheel, dance, and etc.
I ran your code on them but it failed to reconstruct the motion, instead got the Runtime error below..
Building the network
x: tensor([[[-5.2118e-03, -1.9778e-03, 3.7148e-02, ..., 4.0354e-01,
7.9354e-01, 1.3558e+00],
[ 5.9371e-01, 2.1293e+00, 3.0198e+00, ..., 1.3015e+00,
-3.0760e-03, 5.9612e-02],
[ 2.6908e+00, 2.8417e+00, 3.1971e+00, ..., 2.9587e+00,
-8.6406e-03, -2.6097e-02],
...,
[ 2.9316e+00, 4.8310e+00, 5.9596e+00, ..., 3.5114e+00,
6.2439e-01, 2.0394e+00],
[-1.5403e-02, -6.0191e-02, -8.2277e-02, ..., -4.6780e-02,
-2.5275e-02, -4.6015e-02],
[-8.5922e-03, -2.5728e-03, 5.3182e-02, ..., -2.7516e-03,
-9.3090e-03, -4.1515e-03]]], device='cuda:0') <class 'torch.Tensor'> torch.Size([1, 1024, 10])
x: tensor([[[-0.0239, -0.0236, -0.0197, ..., -0.0534, -0.0357, -0.0212],
[-0.0038, -0.0016, -0.0057, ..., -0.0095, -0.0091, -0.0155],
[-0.0023, -0.0016, -0.0032, ..., 0.6250, 0.5801, -0.0042],
...,
[-0.0215, -0.0185, -0.0183, ..., -0.0356, -0.0176, -0.0103],
[-0.0991, -0.1097, -0.0967, ..., -0.1064, -0.0717, -0.0246],
[-0.0532, -0.0627, -0.0558, ..., -0.0655, -0.0536, -0.0239]]],
device='cuda:0') <class 'torch.Tensor'> torch.Size([1, 1024, 8])
x: tensor([[[ 0.7402, 1.0614, 0.9979, ..., -0.0066, 0.5572, 1.4654],
[-0.0823, -0.1001, -0.0753, ..., -0.0456, -0.0340, -0.0150],
[-0.0556, -0.0696, -0.0560, ..., -0.0411, -0.0323, -0.0139],
...,
[ 1.7153, 2.3598, 1.4705, ..., -0.0079, 0.0161, 0.3899],
[-0.0161, -0.0133, -0.0115, ..., -0.0120, -0.0171, -0.0142],
[-0.0651, -0.0784, -0.0599, ..., -0.0418, -0.0331, -0.0132]]],
device='cuda:0') <class 'torch.Tensor'> torch.Size([1, 1024, 8])
x: tensor([[[-0.0262, -0.0155],
[ 1.2542, 0.8397],
[ 0.4866, 0.3434],
...,
[ 0.3525, -0.0054],
[-0.0251, -0.0131],
[-0.0137, -0.0037]]], device='cuda:0') <class 'torch.Tensor'> torch.Size([1, 1024, 2])
Traceback (most recent call last):
File "evaluate.py", line 144, in
main(config, args, output_folder)
File "evaluate.py", line 121, in main
export(args.input)
File "evaluate.py", line 101, in export
pre_bones, pre_rotations, pre_rotations_full, pre_pose_3d, pre_c, pre_proj = model.forward_fk(poses_2d_root, parameters)
File "/ssd_data/MotioNet/model/model.py", line 57, in forward_fk
fake_bones = self.forward_S(_input)
File "/ssd_data/MotioNet/model/model.py", line 40, in forward_S
return self.branch_S(_input)
File "/home/trif/anaconda3/envs/motionet-env/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/ssd_data/MotioNet/model/model_zoo.py", line 302, in forward
x = self.drop(self.relu(layer(x)))
File "/home/trif/anaconda3/envs/motionet-env/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/trif/anaconda3/envs/motionet-env/lib/python3.7/site-packages/torch/nn/modules/container.py", line 119, in forward
input = module(input)
File "/home/trif/anaconda3/envs/motionet-env/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/trif/anaconda3/envs/motionet-env/lib/python3.7/site-packages/torch/nn/modules/conv.py", line 263, in forward
return self._conv_forward(input, self.weight, self.bias)
File "/home/trif/anaconda3/envs/motionet-env/lib/python3.7/site-packages/torch/nn/modules/conv.py", line 260, in _conv_forward
self.padding, self.dilation, self.groups)
RuntimeError: Calculated padded input size per channel: (2). Kernel size: (3). Kernel size can't be greater than actual input size
Do you know what is causing this error?
Thanks!
The text was updated successfully, but these errors were encountered: