-
Notifications
You must be signed in to change notification settings - Fork 0
/
neural_style.py
320 lines (259 loc) · 9.37 KB
/
neural_style.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import torch
import torch.nn as nn
import torch.optim as optim
import copy
from closed_form_matting import compute_laplacian
from data_utils import tensor_to_image, image_to_tensor
import losses
class Normalization(nn.Module):
def __init__(self, mean, std):
super(Normalization, self).__init__()
self.mean = mean.view(-1, 1, 1)
self.std = std.view(-1, 1, 1)
def forward(self, img):
return (img - self.mean) / self.std
def get_style_model_and_losses(
cnn,
normalization_mean, normalization_std,
style_img, content_img,
style_masks, content_masks,
device,
alpha2, alpha11, alpha12,
method,
alpha, beta
):
"""
Assumptions:
- cnn is a nn.Sequential
- resize happens only in the pooling layers
"""
print('Building the style transfer model.')
cnn = copy.deepcopy(cnn)
normalization = Normalization(normalization_mean, normalization_std).to(device)
style_layers = ["conv1_1", "conv2_1", "conv3_1", "conv4_1", "conv5_1"]
content_layers = ["conv4_2"]
content_losses = []
style_losses = []
model = nn.Sequential(normalization)
num_pool, num_conv = 0, 0
for layer in cnn.children():
if isinstance(layer, nn.Conv2d):
num_conv += 1
name = "conv{}_{}".format(num_pool, num_conv)
elif isinstance(layer, nn.ReLU):
name = "relu{}_{}".format(num_pool, num_conv)
layer = nn.ReLU(inplace=False)
elif isinstance(layer, nn.MaxPool2d):
num_pool += 1
num_conv = 0
name = "pool_{}".format(num_pool)
if method == 'deepobjstyle':
layer = nn.AvgPool2d(
kernel_size=layer.kernel_size,
stride=layer.stride,
padding=layer.padding,
)
# Update the segmentation masks to match
# the activation matrices of the neural responses.
style_masks = [layer(mask) for mask in style_masks]
content_masks = [layer(mask) for mask in content_masks]
elif isinstance(layer, nn.BatchNorm2d):
name = "bn{}_{}".format(num_pool, num_conv)
else:
raise RuntimeError(
"Unrecognized layer: {}".format(layer.__class__.__name__)
)
model.add_module(name, layer)
if method == 'deepobjstyle':
if name in content_layers:
target = model(content_img).detach()
content_loss = losses.ContentLossDOS(target, alpha11=alpha11, alpha2=alpha2)
model.add_module("content_loss_{}".format(num_pool), content_loss)
content_losses.append(content_loss)
if name in style_layers:
target_feature = model(style_img).detach()
style_loss = losses.AugmentedStyleLoss(target_feature, style_masks, content_masks, alpha12=alpha12)
model.add_module("style_loss_{}".format(num_pool), style_loss)
style_losses.append(style_loss)
if method == 'neural_style':
if name in content_layers:
target = model(content_img).detach()
content_loss = losses.ContentLoss(target, alpha=alpha)
model.add_module("content_loss_{}".format(num_pool), content_loss)
content_losses.append(content_loss)
if name in style_layers:
target_feature = model(style_img).detach()
style_loss = losses.StyleLoss(target_feature, beta=beta)
model.add_module("style_loss_{}".format(num_pool), style_loss)
style_losses.append(style_loss)
# Trim off the layers after the last content and style losses
# to speed up forward pass.
for i in range(len(model) - 1, -1, -1):
if isinstance(model[i], (losses.ContentLoss, losses.ContentLossDOS, losses.StyleLoss, losses.AugmentedStyleLoss)):
break
model = model[: (i + 1)]
return model, style_losses, content_losses
def run_style_transfer(
cnn,
normalization_mean, normalization_std,
style_img, content_img, input_img,
style_masks, content_masks,
device,
reg,
num_steps,
alpha2, alpha11, alpha12, alpha13,
method,
alpha, beta,
style_layer_weight=0.2
):
if method == 'deepobjstyle':
run_style_transfer_dos(cnn, normalization_mean, normalization_std,
style_img, content_img, input_img,
style_masks, content_masks,
device,
reg,
num_steps,
alpha2, alpha11, alpha12, alpha13,
method,
alpha, beta,
style_layer_weight)
if method == 'neural_style':
run_style_transfer_ns(cnn, normalization_mean, normalization_std,
style_img, content_img, input_img,
style_masks, content_masks,
device,
num_steps,
alpha2, alpha11, alpha12,
method,
alpha, beta,
style_layer_weight)
def run_style_transfer_dos(
cnn,
normalization_mean, normalization_std,
style_img, content_img, input_img,
style_masks, content_masks,
device,
reg,
num_steps,
alpha2, alpha11, alpha12, alpha13,
method,
alpha, beta,
style_layer_weight
):
"""
Run the style transfer.
`reg_weight` is the photorealistic regularization hyperparameter
"""
model, style_losses, content_losses = get_style_model_and_losses(
cnn,
normalization_mean, normalization_std,
style_img, content_img,
style_masks, content_masks,
device,
alpha2, alpha11, alpha12,
method,
alpha, beta
)
optimizer = optim.LBFGS([input_img.requires_grad_()])
if reg:
L = compute_laplacian(tensor_to_image(content_img))
def regularization_grad(input_img):
"""
Photorealistic regularization
See Luan et al. for the details.
"""
im = tensor_to_image(input_img)
grad = L.dot(im.reshape(-1, 3))
loss = (grad * im.reshape(-1, 3)).sum()
return loss, 2. * grad.reshape(*im.shape)
print('Optimizing.')
step = 0
while step <= num_steps:
def closure():
"""
https://pytorch.org/docs/stable/optim.html#optimizer-step-closure
"""
input_img.data.clamp_(0, 1)
optimizer.zero_grad()
model(input_img)
get_loss = lambda x: x.loss
style_score = style_layer_weight * sum(map(get_loss, style_losses))
content_score = sum(map(get_loss, content_losses))
loss = style_score + content_score
loss.backward()
# Add photorealistic regularization
if reg:
reg_loss, reg_grad = regularization_grad(input_img)
reg_grad_tensor = image_to_tensor(reg_grad)
input_img.grad += alpha13 * reg_grad_tensor.to(device)
loss += alpha13 * reg_loss
nonlocal step
step += 1
if step % 50 == 0:
print(
"step {:>4d}:".format(step),
"S: {:.3f} C: {:.3f} R:{:.3f}".format(
style_score.item(), content_score.item(), alpha13 * reg_loss if reg else 0
),
)
return loss
optimizer.step(closure)
input_img.data.clamp_(0, 1)
return input_img
def run_style_transfer_ns(
cnn,
normalization_mean, normalization_std,
style_img, content_img, input_img,
style_masks, content_masks,
device,
num_steps,
alpha2, alpha11, alpha12,
method,
alpha, beta,
style_layer_weight
):
model, style_losses, content_losses = get_style_model_and_losses(
cnn,
normalization_mean, normalization_std,
style_img, content_img,
style_masks, content_masks,
device,
alpha2, alpha11, alpha12,
method,
alpha, beta
)
# We want to optimize the input and not the model parameters so we
# update all the requires_grad fields accordingly
input_img.requires_grad_(True)
model.requires_grad_(False)
optimizer = optim.LBFGS([input_img])
style_scores = []
content_scores = []
print('Optimizing.')
run = [0]
while run[0] <= num_steps:
def closure():
# correct the values of updated input image
with torch.no_grad():
input_img.clamp_(0, 1)
optimizer.zero_grad()
model(input_img)
style_score = 0
content_score = 0
for sl in style_losses:
style_score += style_layer_weight * sl.loss
for cl in content_losses:
content_score += cl.loss
style_scores.append(style_score.item())
content_scores.append(content_score.item())
loss = style_score + content_score
loss.backward()
run[0] += 1
if run[0] % 50 == 0:
print("run {}: Style Loss: {:4f} Content Loss: {:4f} ".format(run, style_score.item(), content_score.item()))
return style_score + content_score
optimizer.step(closure)
# a last correction...
with torch.no_grad():
input_img.clamp_(0, 1)
return input_img, style_scores, content_scores