forked from GreenleafLab/MPAL-Single-Cell-2019
-
Notifications
You must be signed in to change notification settings - Fork 0
/
scATAC_02_Get_Peak_Set_hg19_v2.R
333 lines (316 loc) · 13.6 KB
/
scATAC_02_Get_Peak_Set_hg19_v2.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
#Creating a peak set, summarized experiment and LSI clustering
#07/31/19
#Adapted from Satpathy*, Granja*, et al.
#Massively parallel single-cell chromatin landscapes of human immune
#cell development and intratumoral T cell exhaustion (2019)
#Created by Jeffrey Granja
library(Matrix)
library(SummarizedExperiment)
library(matrixStats)
library(readr)
library(GenomicRanges)
library(magrittr)
library(edgeR)
library(Seurat)
library(BSgenome.Hsapiens.UCSC.hg19)
set.seed(1)
countInsertions <- function(query, fragments, by = "RG"){
#Count By Fragments Insertions
inserts <- c(
GRanges(seqnames = seqnames(fragments), ranges = IRanges(start(fragments), start(fragments)), RG = mcols(fragments)[,by]),
GRanges(seqnames = seqnames(fragments), ranges = IRanges(end(fragments), end(fragments)), RG = mcols(fragments)[,by])
)
by <- "RG"
overlapDF <- DataFrame(findOverlaps(query, inserts, ignore.strand = TRUE, maxgap=-1L, minoverlap=0L, type = "any"))
overlapDF$name <- mcols(inserts)[overlapDF[, 2], by]
overlapTDF <- transform(overlapDF, id = match(name, unique(name)))
#Calculate Overlap Stats
inPeaks <- table(overlapDF$name)
total <- table(mcols(inserts)[, by])
total <- total[names(inPeaks)]
frip <- inPeaks / total
#Summarize
sparseM <- Matrix::sparseMatrix(
i = overlapTDF[, 1],
j = overlapTDF[, 4],
x = rep(1, nrow(overlapTDF)),
dims = c(length(query), length(unique(overlapDF$name))))
colnames(sparseM) <- unique(overlapDF$name)
total <- total[colnames(sparseM)]
frip <- frip[colnames(sparseM)]
out <- list(counts = sparseM, frip = frip, total = total)
return(out)
}
seuratLSI <- function(mat, nComponents = 50, binarize = TRUE, nFeatures = NULL){
#TF IDF LSI adapted from flyATAC
cs <- Matrix::colSums(mat)
if(binarize){
message(paste0("Binarizing matrix..."))
mat@x[mat@x > 0] <- 1
}
if(!is.null(nFeatures)){
message(paste0("Getting top ", nFeatures, " features..."))
mat <- mat[head(order(Matrix::rowSums(mat),decreasing = TRUE),nFeatures),]
}
#Calc TF IDF
message("Computing Term Frequency IDF...")
freqs <- t(t(mat)/Matrix::colSums(mat))
idf <- as(log(1 + ncol(mat) / Matrix::rowSums(mat)), "sparseVector")
tfidf <- as(Matrix::Diagonal(x=as.vector(idf)), "sparseMatrix") %*% freqs
#Calc SVD then LSI
message("Computing SVD using irlba...")
svd <- irlba::irlba(tfidf, nComponents, nComponents)
svdDiag <- matrix(0, nrow=nComponents, ncol=nComponents)
diag(svdDiag) <- svd$d
matSVD <- t(svdDiag %*% t(svd$v))
rownames(matSVD) <- colnames(mat)
colnames(matSVD) <- paste0("PC",seq_len(ncol(matSVD)))
#Make Seurat Object
message("Making Seurat Object...")
mat <- mat[1:100,] + 1
obj <- CreateSeuratObject(mat, project='scATAC', min.cells=0, min.genes=0)
obj <- SetDimReduction(object = obj, reduction.type = "pca", slot = "cell.embeddings", new.data = matSVD)
obj <- SetDimReduction(object = obj, reduction.type = "pca", slot = "key", new.data = "PC")
return(obj)
}
addClusters <- function(obj, minGroupSize = 50, dims.use = seq_len(50), initialResolution = 0.8){
#First Iteration of Find Clusters
currentResolution <- initialResolution
obj <- FindClusters(object = obj, reduction.type = "pca", dims.use = dims.use, resolution = currentResolution, print.output = FALSE)
minSize <- min(table([email protected][[paste0("res.",currentResolution)]]))
nClust <- length(unique(paste0([email protected][[paste0("res.",currentResolution)]])))
message(sprintf("Current Resolution = %s, No of Clusters = %s, Minimum Cluster Size = %s", currentResolution, nClust, minSize))
#If clusters are smaller than minimum group size
while(minSize <= minGroupSize){
[email protected] <- [email protected][,-which(colnames([email protected])==paste0("res.",currentResolution))]
currentResolution <- currentResolution*initialResolution
obj <- FindClusters(object = obj, reduction.type = "pca", dims.use = dims.use, resolution = currentResolution, print.output = FALSE, force.recalc = TRUE)
minSize <- min(table([email protected][[paste0("res.",currentResolution)]]))
nClust <- length(unique(paste0([email protected][[paste0("res.",currentResolution)]])))
message(sprintf("Current Resolution = %s, No of Clusters = %s, Minimum Cluster Size = %s", currentResolution, nClust, minSize))
}
return(obj)
}
extendedPeakSet <- function(df, BSgenome = NULL, extend = 250, blacklist = NULL, nSummits = 100000){
#Helper Functions
readSummits <- function(file){
df <- suppressMessages(data.frame(readr::read_tsv(file, col_names = c("chr","start","end","name","score"))))
df <- df[,c(1,2,3,5)] #do not keep name column it can make the size really large
return(GenomicRanges::makeGRangesFromDataFrame(df=df,keep.extra.columns = TRUE,starts.in.df.are.0based = TRUE))
}
nonOverlappingGRanges <- function(gr, by = "score", decreasing = TRUE, verbose = FALSE){
stopifnot(by %in% colnames(mcols(gr)))
clusterGRanges <- function(gr, filter = TRUE, by = "score", decreasing = TRUE){
gr <- sort(sortSeqlevels(gr))
r <- GenomicRanges::reduce(gr, min.gapwidth=0L, ignore.strand=TRUE)
o <- findOverlaps(gr,r)
mcols(gr)$cluster <- subjectHits(o)
gr <- gr[order(mcols(gr)[,by], decreasing = decreasing),]
gr <- gr[!duplicated(mcols(gr)$cluster),]
gr <- sort(sortSeqlevels(gr))
mcols(gr)$cluster <- NULL
return(gr)
}
if(verbose){
message("Converging", appendLF = FALSE)
}
i <- 0
gr_converge <- gr
while(length(gr_converge) > 0){
if(verbose){
message(".", appendLF = FALSE)
}
i <- i + 1
gr_selected <- clusterGRanges(gr = gr_converge, filter = TRUE, by = by, decreasing = decreasing)
gr_converge <- subsetByOverlaps(gr_converge ,gr_selected, invert=TRUE) #blacklist selected gr
if(i == 1){ #if i=1 then set gr_all to clustered
gr_all <- gr_selected
}else{
gr_all <- c(gr_all, gr_selected)
}
}
if(verbose){
message("\nSelected ", length(gr_all), " from ", length(gr))
}
gr_all <- sort(sortSeqlevels(gr_all))
return(gr_all)
}
#Check-------
stopifnot(extend > 0)
stopifnot("samples" %in% colnames(df))
stopifnot("groups" %in% colnames(df))
stopifnot("summits" %in% colnames(df))
stopifnot(!is.null(BSgenome))
stopifnot(all(apply(df,1,function(x){file.exists(paste0(x[3]))})))
#------------
#Deal with blacklist
if(is.null(blacklist)){
blacklist <- GRanges()
}else if(is.character(blacklist)){
blacklist <- rtracklayer::import.bed(blacklist)
}
stopifnot(inherits(blacklist,"GenomicRanges"))
#------------
#Time to do stuff
chromSizes <- GRanges(names(seqlengths(BSgenome)), IRanges(1, seqlengths(BSgenome)))
chromSizes <- GenomeInfoDb::keepStandardChromosomes(chromSizes, pruning.mode = "coarse")
groups <- unique(df$groups)
groupGRList <- GenomicRanges::GenomicRangesList(lapply(seq_along(groups), function(i){
df_group = df[which(df$groups==groups[i]),]
grList <- GenomicRanges::GenomicRangesList(lapply(paste0(df_group$summits), function(x){
extended_summits <- readSummits(x) %>%
resize(., width = 2 * extend + 1, fix = "center") %>%
subsetByOverlaps(.,chromSizes,type="within") %>%
subsetByOverlaps(.,blacklist,invert=TRUE) %>%
nonOverlappingGRanges(., by="score", decreasing=TRUE)
extended_summits <- extended_summits[order(extended_summits$score,decreasing=TRUE)]
if(!is.null(nSummits)){
extended_summits <- head(extended_summits, nSummits)
}
mcols(extended_summits)$scoreQuantile <- trunc(rank(mcols(extended_summits)$score))/length(mcols(extended_summits)$score)
extended_summits
}))
#Non Overlapping
grNonOverlapping <- nonOverlappingGRanges(unlist(grList), by = "scoreQuantile", decreasing = TRUE)
#Free Up Memory
remove(grList)
gc()
grNonOverlapping
}))
grFinal <- nonOverlappingGRanges(unlist(groupGRList), by = "scoreQuantile", decreasing = TRUE)
grFinal <- sort(sortSeqlevels(grFinal))
return(grFinal)
}
groupSums <- function(mat, groups = NULL, na.rm = TRUE, sparse = FALSE){
stopifnot(!is.null(groups))
stopifnot(length(groups) == ncol(mat))
gm <- lapply(unique(groups), function(x) {
if (sparse) {
Matrix::rowSums(mat[, which(groups == x), drop = F], na.rm = na.rm)
}else {
rowSums(mat[, which(groups == x), drop = F], na.rm = na.rm)
}
}) %>% Reduce("cbind", .)
colnames(gm) <- unique(groups)
return(gm)
}
#-------------------------------------------------------------------------------------------------
# Start
#-------------------------------------------------------------------------------------------------
fragmentFiles <- list.files("data", pattern = ".rds", full.names = TRUE)
#-------------------------------------------------------------------------------------------------
# Get Counts In Windows
#-------------------------------------------------------------------------------------------------
genome <- BSgenome.Hsapiens.UCSC.hg19
chromSizes <- GRanges(names(seqlengths(genome)), IRanges(1, seqlengths(genome)))
chromSizes <- GenomeInfoDb::keepStandardChromosomes(chromSizes, pruning.mode = "coarse")
windows <- unlist(tile(chromSizes, width = 2500))
countsList <- lapply(seq_along(fragmentFiles), function(i){
message(sprintf("%s of %s", i, length(fragmentFiles)))
counts <- countInsertions(windows, readRDS(fragmentFiles[i]), by = "RG")[[1]]
counts
})
mat <- lapply(countsList, function(x) x) %>% Reduce("cbind",.)
remove(countsList)
gc()
#-------------------------------------------------------------------------------------------------
# Run LSI Clustering with Seurat
#-------------------------------------------------------------------------------------------------
set.seed(1)
message("Making Seurat LSI Object...")
obj <- seuratLSI(mat, nComponents = 25, nFeatures = 20000)
message("Adding Graph Clusters...")
obj <- addClusters(obj, dims.use = 2:25, minGroupSize = 200, initialResolution = 0.8)
saveRDS(obj, "results/Save-LSI-Windows-Seurat.rds")
clusterResults <- split(rownames([email protected]), paste0("Cluster",[email protected][,ncol([email protected])]))
remove(obj)
gc()
#-------------------------------------------------------------------------------------------------
# Get Cluster Beds
#-------------------------------------------------------------------------------------------------
dirClusters <- "results/LSI-Cluster-Beds/"
dir.create(dirClusters)
for(i in seq_along(fragmentFiles)){
fragments <-readRDS(fragmentFiles[i])
for(j in seq_along(clusterResults)){
message(sprintf("%s of %s", j, length(clusterResults)))
fragmentsj <- fragments[fragments$RG %in% clusterResults[[j]]]
if(length(fragmentsj) > 0){
out <- data.frame(
chr = c(seqnames(fragmentsj), seqnames(fragmentsj)),
start = c(as.integer(start(fragmentsj) - 1), as.integer(end(fragmentsj) - 1)),
end = c(as.integer(start(fragmentsj)), as.integer(end(fragmentsj)))
) %>% readr::write_tsv(
x = .,
append = TRUE,
path = paste0(dirClusters, paste0(names(clusterResults)[j], ".bed")),
col_names = FALSE)
}
}
}
#-------------------------------------------------------------------------------------------------
# Run MACS2
#-------------------------------------------------------------------------------------------------
dirPeaks <- "results/LSI-Cluster-Peaks/"
method <- "q"
cutoff <- 0.05
shift <- -75
extsize <- 150
genome_size <- 2.7e9
for(j in seq_along(clusterResults)){
message(sprintf("%s of %s", j, length(clusterResults)))
clusterBedj <- paste0(dirClusters,names(clusterResults)[j],".bed")
cmdPeaks <- sprintf(
"macs2 callpeak -g %s --name %s --treatment %s --outdir %s --format BED --nomodel --call-summits --nolambda --keep-dup all",
genome_size,
names(clusterResults)[j],
clusterBedj,
dirPeaks
)
if (!is.null(shift) & !is.null(extsize)) {
cmdPeaks <- sprintf("%s --shift %s --extsize %s", cmdPeaks, shift, extsize)
}
if (tolower(method) == "p") {
cmdPeaks <- sprintf("%s -p %s", cmdPeaks, cutoff)
}else {
cmdPeaks <- sprintf("%s -q %s", cmdPeaks, cutoff)
}
message("Running Macs2...")
message(cmdPeaks)
system(cmdPeaks, intern = TRUE)
}
#-------------------------------------------------------------------------------------------------
# Make Non-Overlapping Peak Set
#-------------------------------------------------------------------------------------------------
df <- data.frame(
samples = gsub("\\_summits.bed","",list.files(dirPeaks, pattern = "\\_summits.bed", full.names = FALSE)),
groups = "scATAC",
summits = list.files(dirPeaks, pattern = "\\_summits.bed", full.names = TRUE)
)
unionPeaks <- extendedPeakSet(
df = df,
BSgenome = genome,
extend = 250,
blacklist = "data/hg19.blacklist.bed",
nSummits = 200000
)
unionPeaks <- unionPeaks[seqnames(unionPeaks) %in% paste0("chr",c(1:22,"X"))]
unionPeaks <- keepSeqlevels(unionPeaks, paste0("chr",c(1:22,"X")))
#Create Counts list
countsPeaksList <- lapply(seq_along(fragmentFiles), function(i){
message(sprintf("%s of %s", i, length(fragmentFiles)))
gc()
countInsertions(unionPeaks, readRDS(fragmentFiles[i]), by = "RG")
})
#CountsMatrix
mat <- lapply(countsPeaksList, function(x) x[[1]]) %>% Reduce("cbind",.)
frip <- lapply(countsPeaksList, function(x) x[[2]]) %>% unlist
total <- lapply(countsPeaksList, function(x) x[[3]]) %>% unlist
se <- SummarizedExperiment(
assays = SimpleList(counts = mat),
rowRanges = unionPeaks
)
rownames(se) <- paste(seqnames(se),start(se),end(se),sep="_")
colData(se)$FRIP <- frip
colData(se)$uniqueFrags <- total / 2
saveRDS(se, "results/scATAC-Summarized-Experiment.rds")