-
Notifications
You must be signed in to change notification settings - Fork 0
/
imdb_preprocess.py
123 lines (89 loc) · 3.27 KB
/
imdb_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
"""
This script is what created the dataset pickled.
1) You need to download this file and put it in the same directory as this file.
https://github.com/moses-smt/mosesdecoder/raw/master/scripts/tokenizer/tokenizer.perl . Give it execution permission.
2) Get the dataset from http://ai.stanford.edu/~amaas/data/sentiment/ and extract it in the current directory.
3) Then run this script.
"""
dataset_path='/Tmp/bastienf/aclImdb/'
import numpy
import cPickle as pkl
from collections import OrderedDict
import glob
import os
from subprocess import Popen, PIPE
# tokenizer.perl is from Moses: https://github.com/moses-smt/mosesdecoder/tree/master/scripts/tokenizer
tokenizer_cmd = ['./tokenizer.perl', '-l', 'en', '-q', '-']
def tokenize(sentences):
print 'Tokenizing..',
text = "\n".join(sentences)
tokenizer = Popen(tokenizer_cmd, stdin=PIPE, stdout=PIPE)
tok_text, _ = tokenizer.communicate(text)
toks = tok_text.split('\n')[:-1]
print 'Done'
return toks
def build_dict(path):
sentences = []
currdir = os.getcwd()
os.chdir('%s/pos/' % path)
for ff in glob.glob("*.txt"):
with open(ff, 'r') as f:
sentences.append(f.readline().strip())
os.chdir('%s/neg/' % path)
for ff in glob.glob("*.txt"):
with open(ff, 'r') as f:
sentences.append(f.readline().strip())
os.chdir(currdir)
sentences = tokenize(sentences)
print 'Building dictionary..',
wordcount = dict()
for ss in sentences:
words = ss.strip().lower().split()
for w in words:
if w not in wordcount:
wordcount[w] = 1
else:
wordcount[w] += 1
counts = wordcount.values()
keys = wordcount.keys()
sorted_idx = numpy.argsort(counts)[::-1]
worddict = dict()
for idx, ss in enumerate(sorted_idx):
worddict[keys[ss]] = idx+2 # leave 0 and 1 (UNK)
print numpy.sum(counts), ' total words ', len(keys), ' unique words'
return worddict
def grab_data(path, dictionary):
sentences = []
currdir = os.getcwd()
os.chdir(path)
for ff in glob.glob("*.txt"):
with open(ff, 'r') as f:
sentences.append(f.readline().strip())
os.chdir(currdir)
sentences = tokenize(sentences)
seqs = [None] * len(sentences)
for idx, ss in enumerate(sentences):
words = ss.strip().lower().split()
seqs[idx] = [dictionary[w] if w in dictionary else 1 for w in words]
return seqs
def main():
# Get the dataset from http://ai.stanford.edu/~amaas/data/sentiment/
path = dataset_path
dictionary = build_dict(os.path.join(path, 'train'))
train_x_pos = grab_data(path+'train/pos', dictionary)
train_x_neg = grab_data(path+'train/neg', dictionary)
train_x = train_x_pos + train_x_neg
train_y = [1] * len(train_x_pos) + [0] * len(train_x_neg)
test_x_pos = grab_data(path+'test/pos', dictionary)
test_x_neg = grab_data(path+'test/neg', dictionary)
test_x = test_x_pos + test_x_neg
test_y = [1] * len(test_x_pos) + [0] * len(test_x_neg)
f = open('imdb.pkl', 'wb')
pkl.dump((train_x, train_y), f, -1)
pkl.dump((test_x, test_y), f, -1)
f.close()
f = open('imdb.dict.pkl', 'wb')
pkl.dump(dictionary, f, -1)
f.close()
if __name__ == '__main__':
main()