forked from tqch/ddpm-torch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathddim.py
131 lines (108 loc) · 5.39 KB
/
ddim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
"""
Code for the deterministic generative process described by Song et al. (2020) [1]
[1] Song, Jiaming, Chenlin Meng, and Stefano Ermon. "Denoising Diffusion Implicit Models." International Conference on Learning Representations. 2020.
source: https://github.com/ermongroup/ddim/blob/main/runners/diffusion.py#L342-L356
""" # noqa
import ddpm_torch
import math
import torch
__all__ = ["get_selection_schedule", "DDIM"]
# def get_selection_schedule(schedule, size, timesteps):
# """
# :param schedule: selection schedule
# :param size: length of subsequence
# :param timesteps: total timesteps of pretrained ddpm model
# :return: a mapping from subsequence index to original one
# """
# assert schedule in {"linear", "quadratic"}
# power = 1 if schedule == "linear" else 2
# c = timesteps / size ** power
#
# def subsequence(t: np.ndarray):
# return np.floor(c * np.power(t + 1, power) - 1).astype(np.int64)
# return subsequence
def get_selection_schedule(schedule, size, timesteps):
"""
:param schedule: selection schedule
:param size: length of subsequence
:param timesteps: total timesteps of pretrained ddpm model
:return: subsequence
"""
assert schedule in {"linear", "quadratic"}
if schedule == "linear":
subsequence = torch.arange(0, timesteps, timesteps // size)
else:
subsequence = torch.pow(torch.linspace(0, math.sqrt(timesteps * 0.8), size), 2).round().to(torch.int64) # noqa
return subsequence
class DDIM(ddpm_torch.GaussianDiffusion):
def __init__(self, betas, model_mean_type, model_var_type, loss_type, eta, subsequence):
super().__init__(betas, model_mean_type, model_var_type, loss_type)
self.eta = eta # coefficient between [0, 1] that decides the behavior of generative process
self.subsequence = subsequence # subsequence of the accelerated generation
eta2 = eta ** 2
try:
assert not (eta2 != 1. and model_var_type != "fixed-small"), \
"Cannot use DDIM (eta < 1) with var type other than `fixed-small`"
except AssertionError:
# Automatically convert model_var_type to `fixed-small`
self.model_var_type = "fixed-small"
self.alphas_bar = self.alphas_bar[subsequence]
self.alphas_bar_prev = torch.cat([torch.ones(1, dtype=torch.float64), self.alphas_bar[:-1]], dim=0)
self.alphas = self.alphas_bar / self.alphas_bar_prev
self.betas = 1. - self.alphas
self.sqrt_alphas_bar_prev = torch.sqrt(self.alphas_bar_prev)
# q(x_t|x_0)
# re-parameterization: x_t(x_0, \epsilon_t)
self.sqrt_alphas_bar = torch.sqrt(self.alphas_bar)
self.sqrt_one_minus_alphas_bar = torch.sqrt(1. - self.alphas_bar)
self.posterior_var = self.betas * (1. - self.alphas_bar_prev) / (1. - self.alphas_bar) * eta2
self.posterior_logvar_clipped = torch.log(torch.cat([
self.posterior_var[[1]], self.posterior_var[1:]]).clip(min=1e-20))
# coefficients to recover x_0 from x_t and \epsilon_t
self.sqrt_recip_alphas_bar = torch.sqrt(1. / self.alphas_bar)
self.sqrt_recip_m1_alphas_bar = torch.sqrt(1. / self.alphas_bar - 1.)
# coefficients to calculate E[x_{t-1}|x_0, x_t]
self.posterior_mean_coef2 = torch.sqrt(
1 - self.alphas_bar - eta2 * self.betas
) * torch.sqrt(1 - self.alphas_bar_prev) / (1. - self.alphas_bar)
self.posterior_mean_coef1 = self.sqrt_alphas_bar_prev * \
(1. - torch.sqrt(self.alphas) * self.posterior_mean_coef2)
# for fixed model_var_type's
self.fixed_model_var, self.fixed_model_logvar = {
"fixed-large": (
self.betas, torch.log(torch.cat([self.posterior_var[[1]], self.betas[1:]]).clip(min=1e-20))),
"fixed-small": (self.posterior_var, self.posterior_logvar_clipped)
}[self.model_var_type]
self.subsequence = torch.as_tensor(subsequence)
@torch.inference_mode()
def p_sample(self, denoise_fn, shape, device=torch.device("cpu"), noise=None, seed=None):
S = len(self.subsequence)
B, *_ = shape
subsequence = self.subsequence.to(device)
_denoise_fn = lambda x, t: denoise_fn(x, subsequence.gather(0, t))
t = torch.empty((B, ), dtype=torch.int64, device=device)
rng = None
if seed is not None:
rng = torch.Generator(device).manual_seed(seed)
if noise is None:
x_t = torch.empty(shape, device=device).normal_(generator=rng)
else:
x_t = noise.to(device)
for ti in range(S - 1, -1, -1):
t.fill_(ti)
x_t = self.p_sample_step(_denoise_fn, x_t, t, generator=rng)
return x_t
@classmethod
def from_ddpm(cls, diffusion, eta, subsequence):
return cls(**{
k: diffusion.__dict__.get(k, None)
for k in ["betas", "model_mean_type", "model_var_type", "loss_type"]
}, eta=eta, subsequence=subsequence)
if __name__ == "__main__":
from ddpm_torch import GaussianDiffusion, get_beta_schedule
subsequence = get_selection_schedule("linear", 10, 1000)
print(subsequence)
betas = get_beta_schedule("linear", 0.0001, 0.02, 1000)
diffusion = GaussianDiffusion(betas, "eps", "fixed-small", "mse")
print(diffusion.__dict__)
print(DDIM.from_ddpm(diffusion, eta=0., subsequence=subsequence).__dict__)