Skip to content
forked from haitianchen/LEON

Pytorch implementation of LEON: A New Framework for ML-Aided Query Optimization.

Notifications You must be signed in to change notification settings

SimoneZeng/LEON

Repository files navigation

LEON: A New Framework for ML-Aided Query Optimization

Pytorch implementation of LEON: A New Framework for ML-Aided Query Optimization.

Requirment

Python Environment

python 3.8.5
pandas
torch==1.4.0
psycopg2-binary==2.8.5
numpy==1.18.1
networkx
ipdb
Pillow==9.2.0
scikit-learn==1.0.2
scipy==1.7.3
sqlparse
re

Run pip install -r requirements.txt to quickly install Python Environment.

PostgreSQL

Postgres v12.5

pg_hint_plan v1.3.7

After installing PostgreSQL and its extension, you need to modify its default configuration that can find in postgresql.conf

BenchMark

In our paper,we use two benchmark, JOB and TPC-H, you can get it through the following link.

Join-order-benchmark: https://github.com/gregrahn/join-order-benchmark

TPC-H: https://github.com/electrum/tpch-dbgen

Usage

First, you need to modify the log_path, model_path and other parameters in the training code(such as train_job.py), and modify the relevant information required to connect to PostgreSQL in pg_executor.py.

For the dynamic planning search process, we have two implementations. One is based on PostgreSQL itself, which needs to modify its source code; The second is to use Python to simulate the dynamic planning process of PG.

For the former, you need to use allpaths.c to replace the corresponding source code file with the same name of PG, and recompile it. The path of the file is /src/backend/optimizer/path/[allpaths.c](postgres/allpaths.c at REL_12_STABLE · postgres/postgres (github.com))

Modify the relevant path in the code and start the modified PostgreSQL,Run the following command:

python3 [-u] pg_train.py [ > runninglog_path/log/txt 2>&1 ]

For the second search mode, you can run the following command:

python3 [-u] train_Job.py [> runninglog_path/log/txt 2>&1 ]
or 
python3 [-u] train_tpch.py [> runninglog_path/log/txt 2>&1 ]

Contact

If you have any questions about the code, please email [email protected], [email protected]

About

Pytorch implementation of LEON: A New Framework for ML-Aided Query Optimization.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 76.1%
  • C 23.9%