Skip to content

Latest commit

 

History

History
70 lines (42 loc) · 6.22 KB

README.md

File metadata and controls

70 lines (42 loc) · 6.22 KB

Instruction-Tuning-Papers

A trend starts from Natrural-Instruction (ACL 2022), FLAN (ICLR 2022) and T0 (ICLR 2022).

What's the instruction-tuning? It aims to teach language models to follow natural language (including prompt, positive or negative examples, and constraints etc.), to perform better multi-task learning on training tasks and generalization on unseen tasks.

Papers

  1. Cross-task generalization via natural language crowdsourcing instructions

    Swaroop Mishra, Daniel Khashabi, Chitta Baral, Hannaneh Hajishirzi [paper] 2021.4

  2. Finetuned language models are zero-shot learners

    Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, Quoc V. Le [paper] 2021.9

  3. Multitask Prompted Training Enables Zero-Shot Task Generalization Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan, Tali Bers, Stella Biderman, Leo Gao, Thomas Wolf, Alexander M. Rush [paper] 2021.10

  4. ZeroPrompt: Scaling Prompt-Based Pretraining to 1,000 Tasks Improves Zero-Shot Generalization Hanwei Xu, Yujun Chen, Yulun Du, Nan Shao, Yanggang Wang, Haiyu Li, Zhilin Yang [paper] 2022.1

  5. Training language models to follow instructions with human feedback Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, Ryan Lowe [paper] 2022.3

  6. Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei, Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, Eshaan Pathak, Giannis Karamanolakis, Haizhi Gary Lai, Ishan Purohit, Ishani Mondal, Jacob Anderson, Kirby Kuznia, Krima Doshi, Maitreya Patel, Kuntal Kumar Pal, Mehrad Moradshahi, Mihir Parmar, Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh Puri, Rushang Karia, Shailaja Keyur Sampat, Savan Doshi, Siddhartha Mishra, Sujan Reddy, Sumanta Patro, Tanay Dixit, Xudong Shen, Chitta Baral, Yejin Choi, Noah A. Smith, Hannaneh Hajishirzi, Daniel Khashabi [paper] 2022.4

  7. In-BoXBART: Get Instructions into Biomedical Multi-Task Learning Mihir Parmar, Swaroop Mishra, Mirali Purohit, Man Luo, M. Hassan Murad, Chitta Baral [paper] 2022.4

  8. Unsupervised Cross-Task Generalization via Retrieval Augmentation Bill Yuchen Lin, Kangmin Tan, Chris Miller, Beiwen Tian, Xiang Ren [paper] 2022.4

  9. Prompt Consistency for Zero-Shot Task Generalization Chunting Zhou, Junxian He, Xuezhe Ma, Taylor Berg-Kirkpatrick, Graham Neubig [paper] 2022.5

  10. InstructDial: Improving Zero and Few-shot Generalization in Dialogue through Instruction Tuning Prakhar Gupta, Cathy Jiao, Yi-Ting Yeh, Shikib Mehri, Maxine Eskenazi, Jeffrey P. Bigham [paper] 2022.5

  11. Improving Task Generalization via Unified Schema Prompt Wanjun Zhong, Yifan Gao, Ning Ding, Zhiyuan Liu, Ming Zhou, Jiahai Wang, Jian Yin, Nan Duan [paper] 2022.8

  12. Scaling Instruction-Finetuned Language Models Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, Jason Wei [paper] 2022.10

  13. Guess the Instruction! Flipped Learning Makes Language Models Stronger Zero-Shot Learners Seonghyeon Ye, Doyoung Kim, Joel Jang, Joongbo Shin, Minjoon Seo [paper] 2022.10

  14. Retrieval of Soft Prompt Enhances Zero-Shot Task Generalization Seonghyeon Ye, Joel Jang, Doyoung Kim, Yongrae Jo, Minjoon Seo [paper] 2022.10

  15. Zemi: Learning Zero-Shot Semi-Parametric Language Models from Multiple Tasks Zhenhailong Wang, Xiaoman Pan, Dian Yu, Dong Yu, Jianshu Chen, Heng Ji [paper] 2022.10

  16. Learning Instructions with Unlabeled Data for Zero-Shot Cross-Task Generalization Yuxian Gu, Pei Ke, Xiaoyan Zhu, Minlie Huang [paper] 2022.10

  17. Crosslingual Generalization through Multitask Finetuning Niklas Muennighoff, Thomas Wang, Lintang Sutawika, Adam Roberts, Stella Biderman, Teven Le Scao, M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hailey Schoelkopf, Xiangru Tang, Dragomir Radev, Alham Fikri Aji, Khalid Almubarak, Samuel Albanie, Zaid Alyafeai, Albert Webson, Edward Raff, Colin Raffel [paper] 2022.11

  18. Task-aware Retrieval with Instructions Akari Asai, Timo Schick, Patrick Lewis, Xilun Chen, Gautier Izacard, Sebastian Riedel, Hannaneh Hajishirzi, Wen-tau Yih [paper] 2022.11

  19. UnifiedABSA: A Unified ABSA Framework Based on Multi-task Instruction Tuning Zengzhi Wang, Rui Xia, Jianfei Yu [paper] 2022.11