Skip to content

Reading list of Instruction-tuning. A trend starts from Natrural-Instruction (ACL 2022), FLAN (ICLR 2022) and T0 (ICLR 2022).

Notifications You must be signed in to change notification settings

SinclairCoder/Instruction-Tuning-Papers

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 

Repository files navigation

Instruction-Tuning-Papers

A trend starts from Natrural-Instruction (ACL 2022), FLAN (ICLR 2022) and T0 (ICLR 2022).

What's the instruction-tuning? It aims to teach language models to follow natural language (including prompt, positive or negative examples, and constraints etc.), to perform better multi-task learning on training tasks and generalization on unseen tasks.

Papers

  1. Cross-task generalization via natural language crowdsourcing instructions

    Swaroop Mishra, Daniel Khashabi, Chitta Baral, Hannaneh Hajishirzi [paper] 2021.4

  2. Finetuned language models are zero-shot learners

    Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, Quoc V. Le [paper] 2021.9

  3. Multitask Prompted Training Enables Zero-Shot Task Generalization

    Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan, Tali Bers, Stella Biderman, Leo Gao, Thomas Wolf, Alexander M. Rush [paper] 2021.10

  4. ZeroPrompt: Scaling Prompt-Based Pretraining to 1,000 Tasks Improves Zero-Shot Generalization

    Hanwei Xu, Yujun Chen, Yulun Du, Nan Shao, Yanggang Wang, Haiyu Li, Zhilin Yang [paper] 2022.1

  5. UnifiedSKG: Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models

    Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong, Torsten Scholak, Michihiro Yasunaga, Chien-Sheng Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Victor Zhong, Bailin Wang, Chengzu Li, Connor Boyle, Ansong Ni, Ziyu Yao, Dragomir Radev, Caiming Xiong, Lingpeng Kong, Rui Zhang, Noah A. Smith, Luke Zettlemoyer, Tao Yu [paper] 2022.1

  6. Training language models to follow instructions with human feedback

    Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, Ryan Lowe [paper] 2022.3

  7. Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks

    Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei, Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, Eshaan Pathak, Giannis Karamanolakis, Haizhi Gary Lai, Ishan Purohit, Ishani Mondal, Jacob Anderson, Kirby Kuznia, Krima Doshi, Maitreya Patel, Kuntal Kumar Pal, Mehrad Moradshahi, Mihir Parmar, Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh Puri, Rushang Karia, Shailaja Keyur Sampat, Savan Doshi, Siddhartha Mishra, Sujan Reddy, Sumanta Patro, Tanay Dixit, Xudong Shen, Chitta Baral, Yejin Choi, Noah A. Smith, Hannaneh Hajishirzi, Daniel Khashabi [paper] 2022.4

  8. In-BoXBART: Get Instructions into Biomedical Multi-Task Learning

    Mihir Parmar, Swaroop Mishra, Mirali Purohit, Man Luo, M. Hassan Murad, Chitta Baral [paper] 2022.4

  9. Unsupervised Cross-Task Generalization via Retrieval Augmentation

    Bill Yuchen Lin, Kangmin Tan, Chris Miller, Beiwen Tian, Xiang Ren [paper] 2022.4

  10. Prompt Consistency for Zero-Shot Task Generalization

    Chunting Zhou, Junxian He, Xuezhe Ma, Taylor Berg-Kirkpatrick, Graham Neubig [paper] 2022.5

  11. Instruction Induction: From Few Examples to Natural Language Task Descriptions

    Or Honovich, Uri Shaham, Samuel R. Bowman, Omer Levy [paper] 2022.5

  12. InstructDial: Improving Zero and Few-shot Generalization in Dialogue through Instruction Tuning

    Prakhar Gupta, Cathy Jiao, Yi-Ting Yeh, Shikib Mehri, Maxine Eskenazi, Jeffrey P. Bigham [paper] 2022.5

  13. reStructured Pre-training

    Weizhe Yuan, Pengfei Liu [paper] 2022.6

  14. Improving Task Generalization via Unified Schema Prompt

    Wanjun Zhong, Yifan Gao, Ning Ding, Zhiyuan Liu, Ming Zhou, Jiahai Wang, Jian Yin, Nan Duan [paper] 2022.8

  15. Scaling Instruction-Finetuned Language Models

    Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, Jason Wei [paper] 2022.10

  16. Guess the Instruction! Flipped Learning Makes Language Models Stronger Zero-Shot Learners

    Seonghyeon Ye, Doyoung Kim, Joel Jang, Joongbo Shin, Minjoon Seo [paper] 2022.10

  17. Retrieval of Soft Prompt Enhances Zero-Shot Task Generalization

    Seonghyeon Ye, Joel Jang, Doyoung Kim, Yongrae Jo, Minjoon Seo [paper] 2022.10

  18. Zemi: Learning Zero-Shot Semi-Parametric Language Models from Multiple Tasks

    Zhenhailong Wang, Xiaoman Pan, Dian Yu, Dong Yu, Jianshu Chen, Heng Ji [paper] 2022.10

  19. Learning Instructions with Unlabeled Data for Zero-Shot Cross-Task Generalization

    Yuxian Gu, Pei Ke, Xiaoyan Zhu, Minlie Huang [paper] 2022.10

  20. Crosslingual Generalization through Multitask Finetuning

    Niklas Muennighoff, Thomas Wang, Lintang Sutawika, Adam Roberts, Stella Biderman, Teven Le Scao, M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hailey Schoelkopf, Xiangru Tang, Dragomir Radev, Alham Fikri Aji, Khalid Almubarak, Samuel Albanie, Zaid Alyafeai, Albert Webson, Edward Raff, Colin Raffel [paper] 2022.11

  21. Task-aware Retrieval with Instructions

    Akari Asai, Timo Schick, Patrick Lewis, Xilun Chen, Gautier Izacard, Sebastian Riedel, Hannaneh Hajishirzi, Wen-tau Yih [paper] 2022.11

  22. UnifiedABSA: A Unified ABSA Framework Based on Multi-task Instruction Tuning

    Zengzhi Wang, Rui Xia, Jianfei Yu [paper] 2022.11

  23. Unnatural Instructions: Tuning Language Models with (Almost) No Human Labor

    Or Honovich, Thomas Scialom, Omer Levy, Timo Schick [paper] 2022.12

  24. Improving Cross-task Generalization of Unified Table-to-text Models with Compositional Task Configurations

    Jifan Chen, Yuhao Zhang, Lan Liu, Rui Dong, Xinchi Chen, Patrick Ng, William Yang Wang, Zhiheng Huang [paper] 2022.12

  25. Self-Instruct: Aligning Language Model with Self Generated Instructions

    Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, Hannaneh Hajishirzi [paper] 2022.12

  26. One Embedder, Any Task: Instruction-Finetuned Text Embeddings

    Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang, Yushi Hu, Mari Ostendorf, Wen-tau Yih, Noah A. Smith, Luke Zettlemoyer, Tao Yu [paper] 2022.12

  27. HINT: Hypernetwork Instruction Tuning for Efficient Zero-Shot Generalisation

    Hamish Ivison, Akshita Bhagia, Yizhong Wang, Hannaneh Hajishirzi, Matthew Peters [paper] 2022.12

  28. MultiInstruct: Improving Multi-Modal Zero-Shot Learning via Instruction Tuning

    Zhiyang Xu, Ying Shen, Lifu Huang [paper] 2022.12

  29. OPT-IML: Scaling Language Model Instruction Meta Learning through the Lens of Generalization

    Srinivasan Iyer, Xi Victoria Lin, Ramakanth Pasunuru, Todor Mihaylov, Daniel Simig, Ping Yu, Kurt Shuster, Tianlu Wang, Qing Liu, Punit Singh Koura, Xian Li, Brian O'Horo, Gabriel Pereyra, Jeff Wang, Christopher Dewan, Asli Celikyilmaz, Luke Zettlemoyer, Ves Stoyanov. [paper] 2022.12

  30. Data-Efficient Finetuning Using Cross-Task Nearest Neighbors

    Hamish Ivison, Noah A. Smith, Hannaneh Hajishirzi, Pradeep Dasigi [paper]

  31. The Flan Collection: Designing Data and Methods for Effective Instruction Tuning Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le, Barret Zoph, Jason Wei, Adam Roberts. [paper] 2023.1

  32. Exploring the Benefits of Training Expert Language Models over Instruction Tuning

    Joel Jang, Seungone Kim, Seonghyeon Ye, Doyoung Kim, Lajanugen Logeswaran, Moontae Lee, Kyungjae Lee, Minjoon Seo [paper] 2023.2

  33. GPTScore: Evaluate as You Desire

    Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, Pengfei Liu [paper] 2023.2

  34. Adding Instructions during Pretraining: Effective Way of Controlling Toxicity in Language Models

    Shrimai Prabhumoye, Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro [paper] 2023.2

  35. The Wisdom of Hindsight Makes Language Models Better Instruction Followers

    Tianjun Zhang, Fangchen Liu, Justin Wong, Pieter Abbeel, Joseph E. Gonzalez [paper] 2023.2

  36. In-Context Instruction Learning

    Seonghyeon Ye, Hyeonbin Hwang, Sohee Yang, Hyeongu Yun, Yireun Kim, Minjoon Seo [paper] 2023.2

  37. Exploring the Impact of Instruction Data Scaling on Large Language Models: An Empirical Study on Real-World Use Cases

    Yunjie Ji, Yong Deng, Yan Gong, Yiping Peng, Qiang Niu, Lei Zhang, Baochang Ma, Xiangang Li

  38. Unified Text Structuralization with Instruction-tuned Language Models

    Xuanfan Ni, Piji Li, Huayang Li

Star History

Star History Chart