forked from Chia-Network/chiapos
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.cpp
858 lines (752 loc) · 30.4 KB
/
test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
// Copyright 2018 Chia Network Inc
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <set>
#include "../lib/include/catch.hpp"
#include "../lib/include/picosha2.hpp"
#include "calculate_bucket.hpp"
#include "disk.hpp"
#include "encoding.hpp"
#include "plotter_disk.hpp"
#include "prover_disk.hpp"
#include "sort_manager.hpp"
#include "verifier.hpp"
using namespace std;
uint8_t plot_id_1[] = {35, 2, 52, 4, 51, 55, 23, 84, 91, 10, 111, 12, 13, 222, 151, 16,
228, 211, 254, 45, 92, 198, 204, 10, 9, 10, 11, 129, 139, 171, 15, 23};
uint8_t plot_id_3[] = {5, 104, 52, 4, 51, 55, 23, 84, 91, 10, 111, 12, 13, 222, 151, 16,
228, 211, 254, 45, 92, 198, 204, 10, 9, 10, 11, 129, 139, 171, 15, 23};
vector<unsigned char> intToBytes(uint32_t paramInt, uint32_t numBytes)
{
vector<unsigned char> arrayOfByte(numBytes, 0);
for (uint32_t i = 0; paramInt > 0; i++) {
arrayOfByte[numBytes - i - 1] = paramInt & 0xff;
paramInt >>= 8;
}
return arrayOfByte;
}
static uint128_t to_uint128(uint64_t hi, uint64_t lo) { return (uint128_t)hi << 64 | lo; }
TEST_CASE("SliceInt64FromBytes 1 bit")
{
const uint8_t bytes[9 + 7] = {0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9};
// since we interpret the first 64 bits (8 bytes) as big endian, the
// first byte is 0x01
CHECK(Util::SliceInt64FromBytes(bytes, 0, 1) == 0);
CHECK(Util::SliceInt64FromBytes(bytes, 1, 1) == 0);
CHECK(Util::SliceInt64FromBytes(bytes, 2, 1) == 0);
CHECK(Util::SliceInt64FromBytes(bytes, 3, 1) == 0);
CHECK(Util::SliceInt64FromBytes(bytes, 4, 1) == 0);
CHECK(Util::SliceInt64FromBytes(bytes, 5, 1) == 0);
CHECK(Util::SliceInt64FromBytes(bytes, 6, 1) == 0);
CHECK(Util::SliceInt64FromBytes(bytes, 7, 1) == 1);
// the second byte is 0x2
CHECK(Util::SliceInt64FromBytes(bytes, 8, 1) == 0);
CHECK(Util::SliceInt64FromBytes(bytes, 9, 1) == 0);
CHECK(Util::SliceInt64FromBytes(bytes, 10, 1) == 0);
CHECK(Util::SliceInt64FromBytes(bytes, 11, 1) == 0);
CHECK(Util::SliceInt64FromBytes(bytes, 12, 1) == 0);
CHECK(Util::SliceInt64FromBytes(bytes, 13, 1) == 0);
CHECK(Util::SliceInt64FromBytes(bytes, 14, 1) == 1);
CHECK(Util::SliceInt64FromBytes(bytes, 15, 1) == 0);
// the third byte is 0x3
CHECK(Util::SliceInt64FromBytes(bytes, 16, 1) == 0);
CHECK(Util::SliceInt64FromBytes(bytes, 17, 1) == 0);
CHECK(Util::SliceInt64FromBytes(bytes, 18, 1) == 0);
CHECK(Util::SliceInt64FromBytes(bytes, 19, 1) == 0);
CHECK(Util::SliceInt64FromBytes(bytes, 20, 1) == 0);
CHECK(Util::SliceInt64FromBytes(bytes, 21, 1) == 0);
CHECK(Util::SliceInt64FromBytes(bytes, 22, 1) == 1);
CHECK(Util::SliceInt64FromBytes(bytes, 23, 1) == 1);
}
TEST_CASE("SliceInt64FromBytes 8 bits")
{
const uint8_t bytes[9 + 7] = {0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9};
// since we interpret the first 64 bits (8 bytes) as big endian, the
// first byte is 0x01
CHECK(Util::SliceInt64FromBytes(bytes, 0, 8) == 0b00000001);
CHECK(Util::SliceInt64FromBytes(bytes, 1, 8) == 0b00000010);
CHECK(Util::SliceInt64FromBytes(bytes, 2, 8) == 0b00000100);
CHECK(Util::SliceInt64FromBytes(bytes, 3, 8) == 0b00001000);
CHECK(Util::SliceInt64FromBytes(bytes, 4, 8) == 0b00010000);
CHECK(Util::SliceInt64FromBytes(bytes, 5, 8) == 0b00100000);
CHECK(Util::SliceInt64FromBytes(bytes, 6, 8) == 0b01000000);
CHECK(Util::SliceInt64FromBytes(bytes, 7, 8) == 0b10000001);
CHECK(Util::SliceInt64FromBytes(bytes, 8, 8) == 0b00000010);
CHECK(Util::SliceInt64FromBytes(bytes, 9, 8) == 0b00000100);
CHECK(Util::SliceInt64FromBytes(bytes, 10, 8) == 0b00001000);
CHECK(Util::SliceInt64FromBytes(bytes, 11, 8) == 0b00010000);
CHECK(Util::SliceInt64FromBytes(bytes, 12, 8) == 0b00100000);
CHECK(Util::SliceInt64FromBytes(bytes, 13, 8) == 0b01000000);
CHECK(Util::SliceInt64FromBytes(bytes, 14, 8) == 0b10000000);
CHECK(Util::SliceInt64FromBytes(bytes, 15, 8) == 0b00000001);
CHECK(Util::SliceInt64FromBytes(bytes, 16, 8) == 0b00000011);
CHECK(Util::SliceInt64FromBytes(bytes, 17, 8) == 0b00000110);
CHECK(Util::SliceInt64FromBytes(bytes, 18, 8) == 0b00001100);
CHECK(Util::SliceInt64FromBytes(bytes, 19, 8) == 0b00011000);
}
TEST_CASE("SliceInt64FromBytes 24 bits")
{
const uint8_t bytes[9 + 7] = {0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9};
// since we interpret the first 64 bits (8 bytes) as big endian, the
// first byte is 0x01
CHECK(Util::SliceInt64FromBytes(bytes, 0, 24) == 0b00000001'00000010'00000011);
CHECK(Util::SliceInt64FromBytes(bytes, 1, 24) == 0b0000001'00000010'00000011'0);
CHECK(Util::SliceInt64FromBytes(bytes, 2, 24) == 0b000001'00000010'00000011'00);
CHECK(Util::SliceInt64FromBytes(bytes, 3, 24) == 0b00001'00000010'00000011'000);
CHECK(Util::SliceInt64FromBytes(bytes, 4, 24) == 0b0001'00000010'00000011'0000);
CHECK(Util::SliceInt64FromBytes(bytes, 5, 24) == 0b001'00000010'00000011'00000);
CHECK(Util::SliceInt64FromBytes(bytes, 6, 24) == 0b01'00000010'00000011'000001);
CHECK(Util::SliceInt64FromBytes(bytes, 7, 24) == 0b1'00000010'00000011'0000010);
}
TEST_CASE("SliceInt64FromBytesFull")
{
const uint8_t bytes[9 + 7] = {0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9};
// since we interpret the first 64 bits (8 bytes) as big endian, the
// first byte is 0x01
CHECK(Util::SliceInt64FromBytesFull(bytes, 0, 64) == 0x0102030405060708ull);
CHECK(Util::SliceInt64FromBytesFull(bytes, 1, 64) == 0x0102030405060708ull << 1);
CHECK(Util::SliceInt64FromBytesFull(bytes, 2, 64) == 0x0102030405060708ull << 2);
CHECK(Util::SliceInt64FromBytesFull(bytes, 3, 64) == 0x0102030405060708ull << 3);
CHECK(Util::SliceInt64FromBytesFull(bytes, 4, 64) == 0x1020304050607080ull);
CHECK(Util::SliceInt64FromBytesFull(bytes, 5, 64) == ((0x1020304050607080ull << 1) | 0b1));
CHECK(Util::SliceInt64FromBytesFull(bytes, 6, 64) == ((0x1020304050607080ull << 2) | 0b10));
CHECK(Util::SliceInt64FromBytesFull(bytes, 7, 64) == ((0x1020304050607080ull << 3) | 0b100));
CHECK(Util::SliceInt64FromBytesFull(bytes, 8, 64) == 0x0203040506070809ull);
}
TEST_CASE("Util")
{
SECTION("Increment and decrement")
{
uint8_t bytes[3 + 7] = {45, 172, 225};
REQUIRE(Util::SliceInt64FromBytes(bytes, 2, 19) == 374172);
uint8_t bytes2[1 + 7] = {213};
REQUIRE(Util::SliceInt64FromBytes(bytes2, 1, 5) == 21);
uint8_t bytes3[17 + 7] = {1, 2, 3, 4, 5, 6, 7, 255, 255, 10, 11, 12, 13, 14, 15, 16, 255};
uint128_t int3 = to_uint128(0x01020304050607ff, 0xff0a0b0c0d0e0f10);
REQUIRE(Util::SliceInt64FromBytes(bytes3, 64, 64) == (uint64_t)int3);
REQUIRE(Util::SliceInt64FromBytes(bytes3, 0, 60) == (uint64_t)(int3 >> 68));
REQUIRE(Util::SliceInt128FromBytes(bytes3, 0, 60) == int3 >> 68);
REQUIRE(Util::SliceInt128FromBytes(bytes3, 7, 64) == int3 >> 57);
REQUIRE(Util::SliceInt128FromBytes(bytes3, 7, 72) == int3 >> 49);
REQUIRE(Util::SliceInt128FromBytes(bytes3, 0, 128) == int3);
REQUIRE(Util::SliceInt128FromBytes(bytes3, 3, 125) == int3);
REQUIRE(Util::SliceInt128FromBytes(bytes3, 2, 125) == int3 >> 1);
REQUIRE(Util::SliceInt128FromBytes(bytes3, 0, 120) == int3 >> 8);
REQUIRE(Util::SliceInt128FromBytes(bytes3, 3, 127) == (int3 << 2 | 3));
}
}
TEST_CASE("Bits")
{
SECTION("Slicing and manipulating")
{
Bits g = Bits(13271, 15);
cout << "G: " << g << endl;
cout << "G Slice: " << g.Slice(4, 9) << endl;
cout << "G Slice: " << g.Slice(0, 9) << endl;
cout << "G Slice: " << g.Slice(9, 10) << endl;
cout << "G Slice: " << g.Slice(9, 15) << endl;
cout << "G Slice: " << g.Slice(9, 9) << endl;
REQUIRE(g.Slice(9, 9) == Bits());
uint8_t bytes[2];
g.ToBytes(bytes);
cout << "bytes: " << static_cast<int>(bytes[0]) << " " << static_cast<int>(bytes[1])
<< endl;
cout << "Back to Bits: " << Bits(bytes, 2, 16) << endl;
Bits(256, 9).ToBytes(bytes);
cout << "bytes: " << static_cast<int>(bytes[0]) << " " << static_cast<int>(bytes[1])
<< endl;
cout << "Back to Bits: " << Bits(bytes, 2, 16) << endl;
cout << Bits(640, 11) << endl;
Bits(640, 11).ToBytes(bytes);
cout << "bytes: " << static_cast<int>(bytes[0]) << " " << static_cast<int>(bytes[1])
<< endl;
Bits h = Bits(bytes, 2, 16);
Bits i = Bits(bytes, 2, 17);
cout << "H: " << h << endl;
cout << "I: " << i << endl;
cout << "G: " << g << endl;
cout << "size: " << g.GetSize() << endl;
Bits shifted = (g << 150);
REQUIRE(shifted.GetSize() == 15);
REQUIRE(shifted.ToString() == "000000000000000");
Bits large = Bits(13271, 200);
REQUIRE(large == ((large << 160)) >> 160);
REQUIRE((large << 160).GetSize() == 200);
Bits l = Bits(123287490 & ((1U << 20) - 1), 20);
l = l + Bits(0, 5);
Bits m = Bits(5, 3);
uint8_t buf[1];
m.ToBytes(buf);
REQUIRE(buf[0] == (5 << 5));
}
SECTION("Park Bits")
{
uint32_t const num_bytes = 16000;
uint8_t buf[num_bytes];
uint8_t buf_2[num_bytes];
Util::GetRandomBytes(buf, num_bytes);
ParkBits my_bits = ParkBits(buf, num_bytes, num_bytes * 8);
my_bits.ToBytes(buf_2);
for (uint32_t i = 0; i < num_bytes; i++) {
REQUIRE(buf[i] == buf_2[i]);
}
}
SECTION("Large Bits")
{
uint32_t const num_bytes = 200000;
uint8_t buf[num_bytes];
uint8_t buf_2[num_bytes];
Util::GetRandomBytes(buf, num_bytes);
LargeBits my_bits = LargeBits(buf, num_bytes, num_bytes * 8);
my_bits.ToBytes(buf_2);
for (uint32_t i = 0; i < num_bytes; i++) {
REQUIRE(buf[i] == buf_2[i]);
}
}
}
class FakeDisk : public Disk {
public:
explicit FakeDisk(uint32_t size) : s(size, 'a')
{
f_ = std::stringstream(s, std::ios_base::in | std::ios_base::out);
}
~FakeDisk() {}
void Read(uint64_t begin, uint8_t* memcache, uint64_t length) override
{
f_.seekg(begin);
f_.read(reinterpret_cast<char*>(memcache), length);
}
void Write(uint64_t begin, const uint8_t* memcache, uint64_t length) override
{
f_.seekp(begin);
f_.write(reinterpret_cast<const char*>(memcache), length);
}
void Truncate(uint64_t new_size) override
{
if (new_size <= s.size()) {
s = s.substr(0, new_size);
} else {
s = s + std::string(new_size - s.size(), 0);
}
}
inline std::string GetFileName() override { return "fakedisk"; }
private:
std::string s;
std::stringstream f_;
};
bool CheckMatch(int64_t yl, int64_t yr)
{
int64_t bl = yl / kBC;
int64_t br = yr / kBC;
if (bl + 1 != br)
return false; // Buckets don't match
for (int64_t m = 0; m < kExtraBitsPow; m++) {
if ((((yr % kBC) / kC - ((yl % kBC) / kC)) - m) % kB == 0) {
int64_t c_diff = 2 * m + bl % 2;
c_diff *= c_diff;
if ((((yr % kBC) % kC - ((yl % kBC) % kC)) - c_diff) % kC == 0) {
return true;
}
}
}
return false;
}
// Get next set in the Cartesian product of k ranges of [0, n - 1], similar to
// k nested 'for' loops from 0 to n - 1
static int CartProdNext(uint8_t* items, uint8_t n, uint8_t k, bool init)
{
uint8_t i;
if (init) {
memset(items, 0, k);
return 0;
}
items[0]++;
for (i = 0; i < k; i++) {
if (items[i] == n) {
items[i] = 0;
if (i == k - 1) {
return -1;
}
items[i + 1]++;
} else {
break;
}
}
return 0;
}
static int sq(int n) { return n * n; }
static bool Have4Cycles(uint32_t extraBits, int B, int C)
{
uint8_t m[4];
bool init = true;
while (!CartProdNext(m, 1 << extraBits, 4, init)) {
uint8_t r1 = m[0], r2 = m[1], s1 = m[2], s2 = m[3];
init = false;
if (r1 != s1 && (r1 << extraBits) + r2 != (s2 << extraBits) + s1 &&
(r1 - s1 + r2 - s2) % B == 0) {
uint8_t p[2];
bool initp = true;
while (!CartProdNext(p, 2, 2, initp)) {
uint8_t p1 = p[0], p2 = p[1];
int lhs = sq(2 * r1 + p1) - sq(2 * s1 + p1) + sq(2 * r2 + p2) - sq(2 * s2 + p2);
initp = false;
if (lhs % C == 0) {
fprintf(stderr, "%d %d %d %d %d %d\n", r1, r2, s1, s2, p1, p2);
return true;
}
}
}
}
return false;
}
TEST_CASE("Matching function")
{
SECTION("Cycles") { REQUIRE(!Have4Cycles(kExtraBits, kB, kC)); }
}
void VerifyFC(uint8_t t, uint8_t k, uint64_t L, uint64_t R, uint64_t y1, uint64_t y, uint64_t c)
{
uint8_t sizes[] = {1, 2, 4, 4, 3, 2};
uint8_t size = sizes[t - 2];
FxCalculator fcalc(k, t);
std::pair<Bits, Bits> res = fcalc.CalculateBucket(
Bits(y1, k + kExtraBits), Bits(L, k * size), Bits(R, k * size));
REQUIRE(res.first.GetValue() == y);
if (c) {
REQUIRE(res.second.GetValue() == c);
}
}
TEST_CASE("F functions")
{
SECTION("F1")
{
uint8_t test_k = 35;
uint8_t test_key[] = {0, 2, 3, 4, 5, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
1, 2, 3, 41, 5, 6, 7, 8, 9, 10, 11, 12, 13, 11, 15, 16};
F1Calculator f1(test_k, test_key);
Bits L = Bits(525, test_k);
pair<Bits, Bits> result1 = f1.CalculateBucket(L);
Bits L2 = Bits(526, test_k);
pair<Bits, Bits> result2 = f1.CalculateBucket(L2);
Bits L3 = Bits(625, test_k);
pair<Bits, Bits> result3 = f1.CalculateBucket(L3);
uint64_t results[256];
f1.CalculateBuckets(L.GetValue(), 101, results);
REQUIRE(result1.first.GetValue() == results[0]);
REQUIRE(result2.first.GetValue() == results[1]);
REQUIRE(result3.first.GetValue() == results[100]);
uint32_t max_batch = 1 << kBatchSizes;
test_k = 32;
F1Calculator f1_2(test_k, test_key);
L = Bits(192837491, test_k);
result1 = f1_2.CalculateBucket(L);
L2 = Bits(192837491 + 1, test_k);
result2 = f1_2.CalculateBucket(L2);
L3 = Bits(192837491 + 2, test_k);
result3 = f1_2.CalculateBucket(L3);
Bits L4 = Bits(192837491 + max_batch - 1, test_k);
pair<Bits, Bits> result4 = f1_2.CalculateBucket(L4);
f1_2.CalculateBuckets(L.GetValue(), max_batch, results);
REQUIRE(result1.first.GetValue() == results[0]);
REQUIRE(result2.first.GetValue() == results[1]);
REQUIRE(result3.first.GetValue() == results[2]);
REQUIRE(result4.first.GetValue() == results[max_batch - 1]);
}
SECTION("F2")
{
uint8_t test_key_2[] = {20, 2, 5, 4, 51, 52, 23, 84, 91, 10, 111,
12, 13, 24, 151, 16, 228, 211, 254, 45, 92, 198,
204, 10, 9, 10, 11, 129, 139, 171, 15, 18};
map<uint64_t, vector<pair<Bits, Bits>>> buckets;
uint8_t const k = 12;
uint64_t num_buckets = (1ULL << (k + kExtraBits)) / kBC + 1;
uint64_t x = 0;
F1Calculator f1(k, test_key_2);
for (uint32_t j = 0; j < (1ULL << (k - 4)) + 1; j++) {
uint64_t y[1 << 4];
f1.CalculateBuckets(x, 1U << 4, y);
for (int i = 0; i < 1 << 4; i++) {
uint64_t bucket = y[i] / kBC;
if (buckets.find(bucket) == buckets.end()) {
buckets[bucket] = vector<std::pair<Bits, Bits>>();
}
buckets[bucket].push_back(std::make_pair(Bits(y[i], k + kExtraBits), Bits(x, k)));
if (x + 1 > (1ULL << k) - 1) {
break;
}
++x;
}
if (x + 1 > (1ULL << k) - 1) {
break;
}
}
FxCalculator f2(k, 2);
int total_matches = 0;
for (auto kv : buckets) {
if (kv.first == num_buckets - 1) {
continue;
}
auto bucket_elements_2 = buckets[kv.first + 1];
vector<PlotEntry> left_bucket;
vector<PlotEntry> right_bucket;
for (auto yx1 : kv.second) {
PlotEntry e;
e.y = get<0>(yx1).GetValue();
left_bucket.push_back(e);
}
for (auto yx2 : buckets[kv.first + 1]) {
PlotEntry e;
e.y = get<0>(yx2).GetValue();
right_bucket.push_back(e);
}
sort(
left_bucket.begin(),
left_bucket.end(),
[](const PlotEntry& a, const PlotEntry& b) -> bool { return a.y > b.y; });
sort(
right_bucket.begin(),
right_bucket.end(),
[](const PlotEntry& a, const PlotEntry& b) -> bool { return a.y > b.y; });
vector<pair<uint16_t, uint16_t>> matches = f2.FindMatches(left_bucket, right_bucket);
for (auto match : matches) {
REQUIRE(CheckMatch(left_bucket[match.first].y, right_bucket[match.second].y));
}
total_matches += matches.size();
}
REQUIRE(total_matches > (1 << k) / 2);
REQUIRE(total_matches < (1 << k) * 2);
}
SECTION("Fx")
{
VerifyFC(2, 16, 0x44cb, 0x204f, 0x20a61a, 0x2af546, 0x44cb204f);
VerifyFC(2, 16, 0x3c5f, 0xfda9, 0x3988ec, 0x15293b, 0x3c5ffda9);
VerifyFC(3, 16, 0x35bf992d, 0x7ce42c82, 0x31e541, 0xf73b3, 0x35bf992d7ce42c82);
VerifyFC(3, 16, 0x7204e52d, 0xf1fd42a2, 0x28a188, 0x3fb0b5, 0x7204e52df1fd42a2);
VerifyFC(
4, 16, 0x5b6e6e307d4bedc, 0x8a9a021ea648a7dd, 0x30cb4c, 0x11ad5, 0xd4bd0b144fc26138);
VerifyFC(
4, 16, 0xb9d179e06c0fd4f5, 0xf06d3fef701966a0, 0x1dd5b6, 0xe69a2, 0xd02115f512009d4d);
VerifyFC(5, 16, 0xc2cd789a380208a9, 0x19999e3fa46d6753, 0x25f01e, 0x1f22bd, 0xabe423040a33);
VerifyFC(5, 16, 0xbe3edc0a1ef2a4f0, 0x4da98f1d3099fdf5, 0x3feb18, 0x31501e, 0x7300a3a03ac5);
VerifyFC(6, 16, 0xc965815a47c5, 0xf5e008d6af57, 0x1f121a, 0x1cabbe, 0xc8cc6947);
VerifyFC(6, 16, 0xd420677f6cbd, 0x5894aa2ca1af, 0x2efde9, 0xc2121, 0x421bb8ec);
VerifyFC(7, 16, 0x5fec898f, 0x82283d15, 0x14f410, 0x24c3c2, 0x0);
VerifyFC(7, 16, 0x64ac5db9, 0x7923986, 0x590fd, 0x1c74a2, 0x0);
}
}
void HexToBytes(const string& hex, uint8_t* result)
{
for (unsigned int i = 0; i < hex.length(); i += 2) {
string byteString = hex.substr(i, 2);
uint8_t byte = (uint8_t)strtol(byteString.c_str(), NULL, 16);
result[i / 2] = byte;
}
}
void TestProofOfSpace(
std::string filename,
uint32_t iterations,
uint8_t k,
uint8_t* plot_id,
uint32_t num_proofs)
{
DiskProver prover(filename);
uint8_t* proof_data = new uint8_t[8 * k];
uint32_t success = 0;
for (uint32_t i = 0; i < iterations; i++) {
vector<unsigned char> hash_input = intToBytes(i, 4);
vector<unsigned char> hash(picosha2::k_digest_size);
picosha2::hash256(hash_input.begin(), hash_input.end(), hash.begin(), hash.end());
vector<LargeBits> qualities = prover.GetQualitiesForChallenge(hash.data());
Verifier verifier = Verifier();
for (uint32_t index = 0; index < qualities.size(); index++) {
LargeBits proof = prover.GetFullProof(hash.data(), index);
proof.ToBytes(proof_data);
LargeBits quality = verifier.ValidateProof(plot_id, k, hash.data(), proof_data, k * 8);
REQUIRE(quality.GetSize() == 256);
REQUIRE(quality == qualities[index]);
success += 1;
// Tests invalid proof
proof_data[0] = (proof_data[0] + 1) % 256;
LargeBits quality_2 =
verifier.ValidateProof(plot_id, k, hash.data(), proof_data, k * 8);
REQUIRE(quality_2.GetSize() == 0);
}
}
std::cout << "Success: " << success << "/" << iterations << " "
<< (100 * ((double)success / (double)iterations)) << "%" << std::endl;
REQUIRE(success == num_proofs);
REQUIRE(success > 0.5 * iterations);
REQUIRE(success < 1.5 * iterations);
delete[] proof_data;
}
void PlotAndTestProofOfSpace(
std::string filename,
uint32_t iterations,
uint8_t k,
uint8_t* plot_id,
uint32_t buffer,
uint32_t num_proofs,
uint32_t stripe_size,
uint8_t num_threads)
{
DiskPlotter plotter = DiskPlotter();
uint8_t memo[5] = {1, 2, 3, 4, 5};
plotter.CreatePlotDisk(
".", ".", ".", filename, k, memo, 5, plot_id, 32, buffer, 0, stripe_size, num_threads);
TestProofOfSpace(filename, iterations, k, plot_id, num_proofs);
REQUIRE(remove(filename.c_str()) == 0);
}
TEST_CASE("Plotting")
{
SECTION("Disk plot k18")
{
PlotAndTestProofOfSpace("cpp-test-plot.dat", 100, 18, plot_id_1, 11, 95, 4000, 2);
}
SECTION("Disk plot k19")
{
PlotAndTestProofOfSpace("cpp-test-plot.dat", 100, 19, plot_id_1, 100, 71, 8192, 2);
}
SECTION("Disk plot k19 single-thread")
{
PlotAndTestProofOfSpace("cpp-test-plot.dat", 100, 19, plot_id_1, 100, 71, 8192, 1);
}
SECTION("Disk plot k20")
{
PlotAndTestProofOfSpace("cpp-test-plot.dat", 500, 20, plot_id_3, 100, 469, 16000, 2);
}
SECTION("Disk plot k21")
{
PlotAndTestProofOfSpace("cpp-test-plot.dat", 5000, 21, plot_id_3, 100, 4945, 8192, 4);
}
// SECTION("Disk plot k24") { PlotAndTestProofOfSpace("cpp-test-plot.dat", 100, 24, plot_id_3,
// 100, 107); }
}
TEST_CASE("Invalid plot")
{
SECTION("File gets deleted")
{
string filename = "invalid-plot.dat";
{
DiskPlotter plotter = DiskPlotter();
uint8_t memo[5] = {1, 2, 3, 4, 5};
uint8_t k = 20;
plotter.CreatePlotDisk(".", ".", ".", filename, k, memo, 5, plot_id_1, 32, 200, 32, 8192, 2);
DiskProver prover(filename);
uint8_t* proof_data = new uint8_t[8 * k];
uint8_t challenge[32];
size_t i;
memset(challenge, 155, 32);
vector<LargeBits> qualities;
for (i = 0; i < 50; i++) {
qualities = prover.GetQualitiesForChallenge(challenge);
if (qualities.size())
break;
challenge[0]++;
}
Verifier verifier = Verifier();
REQUIRE(qualities.size() > 0);
for (uint32_t index = 0; index < qualities.size(); index++) {
LargeBits proof = prover.GetFullProof(challenge, index);
proof.ToBytes(proof_data);
LargeBits quality =
verifier.ValidateProof(plot_id_1, k, challenge, proof_data, k * 8);
REQUIRE(quality == qualities[index]);
}
delete[] proof_data;
}
REQUIRE(remove(filename.c_str()) == 0);
REQUIRE_THROWS_WITH([&]() { DiskProver p(filename); }(), "Invalid file " + filename);
}
}
TEST_CASE("Sort on disk")
{
SECTION("ExtractNum")
{
for (int i = 0; i < 15 * 8 - 5; i++) {
uint8_t buf[15 + 7];
Bits((uint128_t)27 << i, 15 * 8).ToBytes(buf);
REQUIRE(Util::ExtractNum(buf, 15, 15 * 8 - 4 - i, 3) == 5);
}
uint8_t buf[16 + 7];
Bits((uint128_t)27 << 5, 128).ToBytes(buf);
REQUIRE(Util::ExtractNum(buf, 16, 100, 200) == 864);
}
SECTION("MemCmpBits")
{
uint8_t left[3];
left[0] = 12;
left[1] = 10;
left[2] = 100;
uint8_t right[3];
right[0] = 12;
right[1] = 10;
right[2] = 100;
REQUIRE(Util::MemCmpBits(left, right, 3, 0) == 0);
REQUIRE(Util::MemCmpBits(left, right, 3, 10) == 0);
right[1] = 11;
REQUIRE(Util::MemCmpBits(left, right, 3, 0) < 0);
REQUIRE(Util::MemCmpBits(left, right, 3, 16) == 0);
right[1] = 9;
REQUIRE(Util::MemCmpBits(left, right, 3, 0) > 0);
right[1] = 10;
// Last bit differs
right[2] = 101;
REQUIRE(Util::MemCmpBits(left, right, 3, 0) < 0);
}
SECTION("Quicksort")
{
uint32_t const iters = 100;
vector<string> hashes;
uint8_t* hashes_bytes = new uint8_t[iters * 16];
memset(hashes_bytes, 0, iters * 16);
srand(0);
for (uint32_t i = 0; i < iters; i++) {
// reverting to rand()
string to_insert = std::to_string(rand());
while (to_insert.length() < 16) {
to_insert += "0";
}
hashes.push_back(to_insert);
memcpy(hashes_bytes + i * 16, to_insert.data(), to_insert.length());
}
sort(hashes.begin(), hashes.end());
QuickSort::Sort(hashes_bytes, 16, iters, 0);
for (uint32_t i = 0; i < iters; i++) {
std::string str(reinterpret_cast<char*>(hashes_bytes) + i * 16, 16);
REQUIRE(str.compare(hashes[i]) == 0);
}
delete[] hashes_bytes;
}
SECTION("Fake disk")
{
FakeDisk d = FakeDisk(10000);
uint8_t buf[5] = {1, 2, 3, 5, 7};
d.Write(250, buf, 5);
uint8_t read_buf[5];
d.Read(250, read_buf, 5);
REQUIRE(memcmp(buf, read_buf, 5) == 0);
}
SECTION("File disk")
{
FileDisk d = FileDisk("test_file.bin");
uint8_t buf[5] = {1, 2, 3, 5, 7};
d.Write(250, buf, 5);
uint8_t read_buf[5];
d.Read(250, read_buf, 5);
REQUIRE(memcmp(buf, read_buf, 5) == 0);
remove("test_file.bin");
}
SECTION("Lazy Sort Manager QS")
{
uint32_t iters = 250000;
uint32_t size = 32;
vector<Bits> input;
const uint32_t memory_len = 1000000;
uint8_t* memory = new uint8_t[memory_len];
SortManager manager(memory, memory_len, 16, 4, size, ".", "test-files", 0, 1);
int total_written_1 = 0;
for (uint32_t i = 0; i < iters; i++) {
vector<unsigned char> hash_input = intToBytes(i, 4);
vector<unsigned char> hash(picosha2::k_digest_size);
picosha2::hash256(hash_input.begin(), hash_input.end(), hash.begin(), hash.end());
total_written_1 += size;
Bits to_write = Bits(hash.data(), size, size * 8);
input.emplace_back(to_write);
manager.AddToCache(to_write);
}
manager.FlushCache();
uint8_t buf[size];
sort(input.begin(), input.end());
uint8_t* buf3;
for (uint32_t i = 0; i < iters; i++) {
buf3 = manager.ReadEntry(i * size);
input[i].ToBytes(buf);
REQUIRE(memcmp(buf, buf3, size) == 0);
}
delete[] memory;
}
SECTION("Lazy Sort Manager uniform sort")
{
uint32_t iters = 120000;
uint32_t size = 32;
vector<Bits> input;
const uint32_t memory_len = 1000000;
uint8_t* memory = new uint8_t[memory_len];
SortManager manager(memory, memory_len, 16, 4, size, ".", "test-files", 0, 1);
int total_written_1 = 0;
for (uint32_t i = 0; i < iters; i++) {
vector<unsigned char> hash_input = intToBytes(i, 4);
vector<unsigned char> hash(picosha2::k_digest_size);
picosha2::hash256(hash_input.begin(), hash_input.end(), hash.begin(), hash.end());
total_written_1 += size;
Bits to_write = Bits(hash.data(), size, size * 8);
input.emplace_back(to_write);
manager.AddToCache(to_write);
}
manager.FlushCache();
uint8_t buf[size];
sort(input.begin(), input.end());
uint8_t* buf3;
for (uint32_t i = 0; i < iters; i++) {
buf3 = manager.ReadEntry(i * size);
input[i].ToBytes(buf);
REQUIRE(memcmp(buf, buf3, size) == 0);
}
delete[] memory;
}
SECTION("Sort in Memory")
{
uint32_t iters = 100000;
uint32_t size = 32;
vector<Bits> input;
uint32_t begin = 1000;
FakeDisk disk = FakeDisk(5000000);
for (uint32_t i = 0; i < iters; i++) {
vector<unsigned char> hash_input = intToBytes(i, 4);
vector<unsigned char> hash(picosha2::k_digest_size);
picosha2::hash256(hash_input.begin(), hash_input.end(), hash.begin(), hash.end());
hash[0] = hash[1] = 0;
disk.Write(begin + i * size, hash.data(), size);
input.emplace_back(Bits(hash.data(), size, size * 8));
}
const uint32_t memory_len = Util::RoundSize(iters) * 30;
uint8_t* memory = new uint8_t[memory_len];
UniformSort::SortToMemory(disk, begin, memory, size, iters, 16);
sort(input.begin(), input.end());
uint8_t buf[size];
for (uint32_t i = 0; i < iters; i++) {
input[i].ToBytes(buf);
REQUIRE(memcmp(buf, memory + i * size, size) == 0);
}
delete[] memory;
}
}
TEST_CASE("bitfield_index-simple")
{
std::vector<bool> const bitfield{true, true, false, true};
bitfield_index const idx(bitfield);
CHECK(idx.lookup(0, 0) == std::pair<uint64_t, uint64_t>{0,0});
CHECK(idx.lookup(0, 1) == std::pair<uint64_t, uint64_t>{0,1});
CHECK(idx.lookup(0, 3) == std::pair<uint64_t, uint64_t>{0,2});
CHECK(idx.lookup(1, 0) == std::pair<uint64_t, uint64_t>{1,0});
CHECK(idx.lookup(1, 2) == std::pair<uint64_t, uint64_t>{1,1});
CHECK(idx.lookup(3, 0) == std::pair<uint64_t, uint64_t>{2,0});
}
TEST_CASE("bitfield_index-use index")
{
std::vector<bool> bitfield(1024 * 1024, false);
CHECK(bitfield.size() == 1048576);
bitfield[1048576 - 3] = true;
bitfield[1048576 - 2] = true;
bitfield[1048576 - 1] = true;
bitfield_index const idx(bitfield);
CHECK(idx.lookup(1048576 - 3, 1) == std::pair<uint64_t, uint64_t>{0,1});
CHECK(idx.lookup(1048576 - 2, 1) == std::pair<uint64_t, uint64_t>{1,1});
}