Skip to content
/ dvc Public
forked from iterative/dvc

🦉Data Version Control | Git for Data & Models | ML Experiments Management

License

Notifications You must be signed in to change notification settings

Skn0tt/dvc

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DVC

Website • Docs • Discuss • Blog • Twitter • Tutorial

https://img.shields.io/travis/iterative/dvc/master.svg?label=Linux%20%26%20Mac%20OS https://img.shields.io/appveyor/ci/iterative/dvc/master.svg?label=Windows

Data Science Version Control or DVC is an open source tool for data science projects. It helps data scientists manage their code and data together in a simple form of Git-like commands.

See details in Get Started.

Step Command
Track code and data together
$ git add train.py
$ dvc add images.zip
Connect code and data by commands
$ dvc run -d images.zip -o images/ unzip -q images.zip
$ dvc run -d images/ -d train.py -o model.p python train.py
Make changes and reproduce
$ vi train.py
$ dvc repro model.p.dvc
Share code
$ git add .
$ git commit -m 'The baseline model'
$ git push
Share data and ML models
$ dvc remote add myremote s3://mybucket/image_cnn
$ dvc core.remote myremote
$ dvc push

It could be installed using pip, Homebrew or an OS-specific package.

pip install dvc

Self-contained packages for Windows, Linux, Mac are available. The latest version of the packages can be found at GitHub releases page.

brew install iterative/homebrew-dvc/dvc

or:

brew cask install iterative/homebrew-dvc/dvc
  1. Git-annex - DVC uses the idea of storing the content of large files (that you don't want to see in your Git repository) in a local key-value store and uses file hardlinks/symlinks instead of the copying actual files.
  2. Git-LFS. - DVC is compatible with any remote storage (S3, Google Cloud, Azure, SSH, etc). DVC utilizes reflinks or hardlinks to avoid copy operation on checkouts which makes much more efficient for large data files.
  3. Makefile (and it's analogues). DVC tracks dependencies (DAG).
  4. Workflow Management Systems. DVC is a workflow management system designed specifically to manage machine learning experiments. DVC is built on top of Git.

DVC is compatible with Git for storing code and the dependency graph (DAG), but not data files cache. To store and share data files cache DVC supports remotes - any cloud (S3, Azure, Google Cloud, etc) or any on-premise network storage (via SSH, for example).

how_dvc_works

Contributions are welcome! Please see our Contributing Guide for more details.

This project is distributed under the Apache license version 2.0 (see the LICENSE file in the project root).

By submitting a pull request for this project, you agree to license your contribution under the Apache license version 2.0 to this project.

About

🦉Data Version Control | Git for Data & Models | ML Experiments Management

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.5%
  • Other 0.5%