forked from flintlib/flint
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsqrtmod.c
126 lines (96 loc) · 3.13 KB
/
sqrtmod.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
/*=============================================================================
This file is part of FLINT.
FLINT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
FLINT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FLINT; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2009 William Hart
Copyright (C) 2011 Sebastian Pancratz
******************************************************************************/
#include <gmp.h>
#include "flint.h"
#include "ulong_extras.h"
mp_limb_t n_sqrtmod(mp_limb_t a, mp_limb_t p)
{
slong i, r, m;
mp_limb_t p1, k, b, g, bpow, gpow, res;
mp_limb_t pinv;
if (a <= 1)
{
return a;
}
/* just do a brute force search */
if (p < 600)
{
mp_limb_t t, t2;
if (p > 50 && n_jacobi_unsigned(a, p) == -1)
return 0;
t = t2 = 1;
while (t <= (p - 1) / 2)
{
if (t2 == a)
return t;
t2 = n_addmod(t2, 2*t + 1, p);
t++;
}
return 0;
}
pinv = n_preinvert_limb(p);
if (n_jacobi_unsigned(a, p) == -1)
return 0;
if ((p & UWORD(3)) == 3)
{
return n_powmod2_ui_preinv(a, (p + 1)/4, p, pinv); /* p == 2^B - 1 isn't prime */
}
if ((p & UWORD(7)) == 5)
{
b = n_powmod2_ui_preinv(a, (p + 3)/8, p, pinv); /* p == 2^B - 3 isn't prime */
g = n_mulmod2_preinv(b, b, p, pinv);
if (g == a)
return b;
g = n_powmod2_ui_preinv(2, (p - 1)/4, p, pinv);
return n_mulmod2_preinv(g, b, p, pinv);
}
r = 0;
p1 = p - 1;
do {
p1 >>= UWORD(1);
r++;
} while ((p1 & UWORD(1)) == 0);
b = n_powmod2_ui_preinv(a, p1, p, pinv);
for (k = 3; ; k+=2) /* 2 is a quadratic residue mod p = 8k + 1 */
{
if (n_jacobi_unsigned(k, p) == -1) break;
}
g = n_powmod2_ui_preinv(k, p1, p, pinv);
res = n_powmod2_ui_preinv(a, (p1 + 1) / 2, p, pinv);
while (b != 1)
{
bpow = b;
m = 0;
do
{
bpow = n_mulmod2_preinv(bpow, bpow, p, pinv);
m++;
} while (m < r && bpow != 1);
gpow = g;
for (i = 1; i < r - m; i++)
{
gpow = n_mulmod2_preinv(gpow, gpow, p, pinv);
}
res = n_mulmod2_preinv(res, gpow, p, pinv);
g = n_mulmod2_preinv(gpow, gpow, p, pinv);
b = n_mulmod2_preinv(b, g, p, pinv);
r = m;
}
return res;
}