forked from ultralytics/JSON2YOLO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
264 lines (227 loc) · 7.19 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import glob
import os
import shutil
from pathlib import Path
import numpy as np
from PIL import ExifTags
from tqdm import tqdm
# Parameters
img_formats = ["bmp", "jpg", "jpeg", "png", "tif", "tiff", "dng"] # acceptable image suffixes
vid_formats = ["mov", "avi", "mp4", "mpg", "mpeg", "m4v", "wmv", "mkv"] # acceptable video suffixes
# Get orientation exif tag
for orientation in ExifTags.TAGS.keys():
if ExifTags.TAGS[orientation] == "Orientation":
break
def exif_size(img):
"""Returns the EXIF-corrected PIL image size as a tuple (width, height)."""
s = img.size # (width, height)
try:
rotation = dict(img._getexif().items())[orientation]
if rotation in [6, 8]: # rotation 270
s = (s[1], s[0])
except Exception:
pass
return s
def split_rows_simple(file="../data/sm4/out.txt"): # from utils import *; split_rows_simple()
"""Splits a text file into train, test, and val files based on specified ratios; expects a file path as input."""
with open(file) as f:
lines = f.readlines()
s = Path(file).suffix
lines = sorted(list(filter(lambda x: len(x) > 0, lines)))
i, j, k = split_indices(lines, train=0.9, test=0.1, validate=0.0)
for k, v in {"train": i, "test": j, "val": k}.items(): # key, value pairs
if v.any():
new_file = file.replace(s, f"_{k}{s}")
with open(new_file, "w") as f:
f.writelines([lines[i] for i in v])
def split_files(out_path, file_name, prefix_path=""): # split training data
"""Splits file names into separate train, test, and val datasets and writes them to prefixed paths."""
file_name = list(filter(lambda x: len(x) > 0, file_name))
file_name = sorted(file_name)
i, j, k = split_indices(file_name, train=0.9, test=0.1, validate=0.0)
datasets = {"train": i, "test": j, "val": k}
for key, item in datasets.items():
if item.any():
with open(f"{out_path}_{key}.txt", "a") as file:
for i in item:
file.write(f"{prefix_path}{file_name[i]}\n")
def split_indices(x, train=0.9, test=0.1, validate=0.0, shuffle=True): # split training data
"""Splits array indices for train, test, and validate datasets according to specified ratios."""
n = len(x)
v = np.arange(n)
if shuffle:
np.random.shuffle(v)
i = round(n * train) # train
j = round(n * test) + i # test
k = round(n * validate) + j # validate
return v[:i], v[i:j], v[j:k] # return indices
def make_dirs(dir="new_dir/"):
"""Creates a directory with subdirectories 'labels' and 'images', removing existing ones."""
dir = Path(dir)
if dir.exists():
shutil.rmtree(dir) # delete dir
for p in dir, dir / "labels", dir / "images":
p.mkdir(parents=True, exist_ok=True) # make dir
return dir
def write_data_data(fname="data.data", nc=80):
"""Writes a Darknet-style .data file with dataset and training configuration."""
lines = [
f"classes = {nc:g}\n",
"train =../out/data_train.txt\n",
"valid =../out/data_test.txt\n",
"names =../out/data.names\n",
"backup = backup/\n",
"eval = coco\n",
]
with open(fname, "a") as f:
f.writelines(lines)
def image_folder2file(folder="images/"): # from utils import *; image_folder2file()
"""Generates a txt file listing all images in a specified folder; usage: `image_folder2file('path/to/folder/')`."""
s = glob.glob(f"{folder}*.*")
with open(f"{folder[:-1]}.txt", "w") as file:
for l in s:
file.write(l + "\n") # write image list
def add_coco_background(path="../data/sm4/", n=1000): # from utils import *; add_coco_background()
"""
Adds COCO dataset background images to a specified folder and lists them in outb.txt; usage:
`add_coco_background('path/', 1000)`.
"""
p = f"{path}background"
if os.path.exists(p):
shutil.rmtree(p) # delete output folder
os.makedirs(p) # make new output folder
# copy images
for image in glob.glob("../coco/images/train2014/*.*")[:n]:
os.system(f"cp {image} {p}")
# add to outb.txt and make train, test.txt files
f = f"{path}out.txt"
fb = f"{path}outb.txt"
os.system(f"cp {f} {fb}")
with open(fb, "a") as file:
file.writelines(i + "\n" for i in glob.glob(f"{p}/*.*"))
split_rows_simple(file=fb)
def create_single_class_dataset(path="../data/sm3"): # from utils import *; create_single_class_dataset('../data/sm3/')
"""Creates a single-class version of an existing dataset in the specified path."""
os.system(f"mkdir {path}_1cls")
def flatten_recursive_folders(path="../../Downloads/data/sm4/"): # from utils import *; flatten_recursive_folders()
"""Flattens nested folders in 'path/images' and 'path/json' into single 'images_flat' and 'json_flat'
directories.
"""
idir, _jdir = f"{path}images/", f"{path}json/"
nidir, njdir = Path(f"{path}images_flat/"), Path(f"{path}json_flat/")
n = 0
# Create output folders
for p in [nidir, njdir]:
if os.path.exists(p):
shutil.rmtree(p) # delete output folder
os.makedirs(p) # make new output folder
for parent, dirs, files in os.walk(idir):
for f in tqdm(files, desc=parent):
f = Path(f)
stem, suffix = f.stem, f.suffix
if suffix.lower()[1:] in img_formats:
n += 1
stem_new = f"{n:g}_{stem}"
image_new = nidir / (stem_new + suffix) # converts all formats to *.jpg
json_new = njdir / f"{stem_new}.json"
image = parent / f
json = Path(parent.replace("images", "json")) / str(f).replace(suffix, ".json")
os.system(f"cp '{json}' '{json_new}'")
os.system(f"cp '{image}' '{image_new}'")
# cv2.imwrite(str(image_new), cv2.imread(str(image)))
print(f"Flattening complete: {n:g} jsons and images")
def coco91_to_coco80_class(): # converts 80-index (val2014) to 91-index (paper)
"""Converts COCO 91-class index (paper) to 80-class index (2014 challenge)."""
return [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
None,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
None,
24,
25,
None,
None,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
None,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
None,
60,
None,
None,
61,
None,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
None,
73,
74,
75,
76,
77,
78,
79,
None,
]