forked from aleju/imgaug
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcheck_affinecv2.py
92 lines (81 loc) · 3.6 KB
/
check_affinecv2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from __future__ import print_function, division
import imgaug as ia
from imgaug import augmenters as iaa
import imageio
import numpy as np
from skimage import data
import cv2
NB_ROWS = 10
NB_COLS = 10
HEIGHT = 200
WIDTH = 256
BB_X1 = 64
BB_X2 = WIDTH - 64
BB_Y1 = 64
BB_Y2 = HEIGHT - 64
def main():
image = data.astronaut()
image = ia.imresize_single_image(image, (HEIGHT, WIDTH))
kps = []
for y in range(NB_ROWS):
ycoord = BB_Y1 + int(y * (BB_Y2 - BB_Y1) / (NB_COLS - 1))
for x in range(NB_COLS):
xcoord = BB_X1 + int(x * (BB_X2 - BB_X1) / (NB_ROWS - 1))
kp = (xcoord, ycoord)
kps.append(kp)
kps = set(kps)
kps = [ia.Keypoint(x=xcoord, y=ycoord) for (xcoord, ycoord) in kps]
kps = ia.KeypointsOnImage(kps, shape=image.shape)
bb = ia.BoundingBox(x1=BB_X1, x2=BB_X2, y1=BB_Y1, y2=BB_Y2)
bbs = ia.BoundingBoxesOnImage([bb], shape=image.shape)
pairs = []
seqs = [
iaa.AffineCv2(rotate=45),
iaa.AffineCv2(translate_px=20),
iaa.AffineCv2(translate_percent=0.1),
iaa.AffineCv2(scale=1.2),
iaa.AffineCv2(scale=0.8),
iaa.AffineCv2(shear=45),
iaa.AffineCv2(rotate=45, cval=256),
iaa.AffineCv2(translate_px=20, mode=cv2.BORDER_CONSTANT),
iaa.AffineCv2(translate_px=20, mode=cv2.BORDER_REPLICATE),
iaa.AffineCv2(translate_px=20, mode=cv2.BORDER_REFLECT),
iaa.AffineCv2(translate_px=20, mode=cv2.BORDER_REFLECT_101),
iaa.AffineCv2(translate_px=20, mode=cv2.BORDER_WRAP),
iaa.AffineCv2(translate_px=20, mode="constant"),
iaa.AffineCv2(translate_px=20, mode="replicate"),
iaa.AffineCv2(translate_px=20, mode="reflect"),
iaa.AffineCv2(translate_px=20, mode="reflect_101"),
iaa.AffineCv2(translate_px=20, mode="wrap"),
iaa.AffineCv2(scale=0.5, order=cv2.INTER_NEAREST),
iaa.AffineCv2(scale=0.5, order=cv2.INTER_LINEAR),
iaa.AffineCv2(scale=0.5, order=cv2.INTER_CUBIC),
iaa.AffineCv2(scale=0.5, order=cv2.INTER_LANCZOS4),
iaa.AffineCv2(scale=0.5, order="nearest"),
iaa.AffineCv2(scale=0.5, order="linear"),
iaa.AffineCv2(scale=0.5, order="cubic"),
iaa.AffineCv2(scale=0.5, order="lanczos4"),
iaa.AffineCv2(rotate=45, translate_px=20, scale=1.2),
iaa.AffineCv2(rotate=45, translate_px=20, scale=0.8),
iaa.AffineCv2(rotate=(-45, 45), translate_px=(-20, 20), scale=(0.8, 1.2), order=ia.ALL, mode=ia.ALL, cval=ia.ALL),
iaa.AffineCv2(rotate=(-45, 45), translate_px=(-20, 20), scale=(0.8, 1.2), order=ia.ALL, mode=ia.ALL, cval=ia.ALL),
iaa.AffineCv2(rotate=(-45, 45), translate_px=(-20, 20), scale=(0.8, 1.2), order=ia.ALL, mode=ia.ALL, cval=ia.ALL),
iaa.AffineCv2(rotate=(-45, 45), translate_px=(-20, 20), scale=(0.8, 1.2), order=ia.ALL, mode=ia.ALL, cval=ia.ALL)
]
for seq in seqs:
seq_det = seq.to_deterministic()
image_aug = seq_det.augment_image(image)
#print(image_aug.dtype, np.min(image_aug), np.max(image_aug))
kps_aug = seq_det.augment_keypoints([kps])[0]
bbs_aug = seq_det.augment_bounding_boxes([bbs])[0]
image_before = np.copy(image)
image_before = kps.draw_on_image(image_before)
image_before = bbs.draw_on_image(image_before)
image_after = np.copy(image_aug)
image_after = kps_aug.draw_on_image(image_after)
image_after = bbs_aug.draw_on_image(image_after)
pairs.append(np.hstack((image_before, image_after)))
ia.imshow(np.vstack(pairs))
imageio.imwrite("affinecv2.jpg", np.vstack(pairs))
if __name__ == "__main__":
main()